Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2665: 147-171, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166599

RESUMO

Iron has a crucial role in plastid biology. Iron is a required cofactor for the operation of the photosynthetic functions and other metabolic pathways. Despite the importance of the iron homeostasis in chloroplasts, the functional analysis of the plastidial iron uptake and homeostasis still lack a consensus methodology. Here, we describe a sequence of subsequent techniques that can be applied in functional characterization of proteins involved in iron uptake and incorporation into chloroplasts as well as of the non-transport protein members of the chloroplast iron homeostasis. Since the ferrous iron ligation of bathophenantroline disulfonate is specific and not disrupted by the presence of other transition metals, it offers a simple way for iron quantification both in solubilized chloroplast samples as well as in ferric chelate reductase activity measurements.


Assuntos
Cloroplastos , Ferro , Ferro/metabolismo , Transporte Biológico , Cloroplastos/metabolismo , Homeostase , Fotossíntese
2.
Plants (Basel) ; 12(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570988

RESUMO

The desiccation tolerance of plants relies on defense mechanisms that enable the protection of macromolecules, biological structures, and metabolism. Although the defense of leaf tissues exposed to solar irradiation is challenging, mechanisms that protect the viability of the roots, yet largely unexplored, are equally important for survival. Although the photosynthetic apparatus in leaves contributes to the generation of oxidative stress under drought stress, we hypothesized that oxidative stress and thus antioxidative defense is also predominant in the roots. Thus, we aimed for a comparative analysis of the protective mechanisms in leaves and roots during the desiccation of Haberlea rhodopensis. Consequently, a high content of non-enzymatic antioxidants and high activity of antioxidant enzymes together with the activation of specific isoenzymes were found in both leaves and roots during the final stages of desiccation of H. rhodopensis. Among others, catalase and glutathione reductase activity showed a similar tendency of changes in roots and leaves, whereas, unlike that in the leaves, superoxide dismutase activity was enhanced under severe but not under medium desiccation in roots. Nitric oxide accumulation in the root tips was found to be sensitive to water restriction but suppressed under severe desiccation. In addition to the antioxidative defense, desiccation induced an enhanced abundance of dehydrins, ELIPs, and sHSP 17.7 in leaves, but this was significantly better in roots. In contrast to leaf cells, starch remained in the cells of the central cylinder of desiccated roots. Taken together, protective compounds and antioxidative defense mechanisms are equally important in protecting the roots to survive desiccation. Since drought-induced damage to the root system fundamentally affects the survival of plants, a better understanding of root desiccation tolerance mechanisms is essential to compensate for the challenges of prolonged dry periods.

3.
Membranes (Basel) ; 13(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37103858

RESUMO

Cardiomyopathies are leading causes of human mortality. Recent data indicate that the cardiomyocyte-derived extracellular vesicles (EVs) released upon cardiac injury are present in circulation. This paper aimed to analyze EVs released under normal and hypoxic conditions by H9c2 (rat), AC16 (human) and HL1 (mouse) cardiac cell lines. Small (sEVs), medium (mEVs) and large EVs (lEVs) were separated from a conditioned medium by a combination of gravity filtration, differential centrifugation and tangential flow filtration. The EVs were characterized by microBCA, SPV lipid assay, nanoparticle tracking analysis, transmission and immunogold electron microscopy, flow cytometry and Western blotting. Proteomic profiles of the EVs were determined. Surprisingly, an endoplasmic reticulum chaperone, endoplasmin (ENPL, grp94 or gp96), was identified in the EV samples, and its association with EVs was validated. The secretion and uptake of ENPL was followed by confocal microscopy using GFP-ENPL fusion protein expressing HL1 cells. We identified ENPL as an internal cargo of cardiomyocyte-derived mEVs and sEVs. Based on our proteomic analysis, its presence in EVs was linked to hypoxia in HL1 and H9c2 cells, and we hypothesize that EV-associated ENPL may have a cardioprotective role by reducing cardiomyocyte ER stress.

4.
Front Plant Sci ; 12: 658987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093616

RESUMO

Iron (Fe) is an essential micronutrient for plants. Due to the requirement for Fe of the photosynthetic apparatus, the majority of shoot Fe content is localised in the chloroplasts of mesophyll cells. The reduction-based mechanism has prime importance in the Fe uptake of chloroplasts operated by Ferric Reductase Oxidase 7 (FRO7) in the inner chloroplast envelope membrane. Orthologue of Arabidopsis thaliana FRO7 was identified in the Brassica napus genome. GFP-tagged construct of BnFRO7 showed integration to the chloroplast. The time-scale expression pattern of BnFRO7 was studied under three different conditions: deficient, optimal, and supraoptimal Fe nutrition in both leaves developed before and during the treatments. Although Fe deficiency has not increased BnFRO7 expression, the slight overload in the Fe nutrition of the plants induced significant alterations in both the pattern and extent of its expression leading to the transcript level suppression. The Fe uptake of isolated chloroplasts decreased under both Fe deficiency and supraoptimal Fe nutrition. Since the enzymatic characteristics of the ferric chelate reductase (FCR) activity of purified chloroplast inner envelope membranes showed a significant loss for the substrate affinity with an unchanged saturation rate, protein level regulation mechanisms are suggested to be also involved in the suppression of the reduction-based Fe uptake of chloroplasts together with the saturation of the requirement for Fe.

5.
J Biotechnol ; 265: 15-24, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29103986

RESUMO

A Cre-lox based auto-excision strategy has been adapted for barley, capable of cre and selectable marker gene (SMG) removal. The cold inducible wheat promoter called wcs120 was utilised for driving Cre expression. The binary vector was carrying the transgene (uidA) and a so called 'recombination cassette' flanked by the lox sequences. This part included both the recombinase gene and the SMG (bar) under the control of a constitutive promoter. T0, T1 and T2 transgenic plants were subjected to low temperature (at 4°C, 10°C and 12°C) at different developmental stages to induce recombination. The presence of uidA, cre, and bar genes and recombination footprints were studied by PCR and DNA sequencing, while cre transcription was followed by qRT-PCR. These analyses indicated that, cold treatment of the germinating seeds (4°C for 3days) followed by plant growing at higher temperature (24°C) has been the most efficient (90-100%), and this treatment lead to heritable changes in the genome. Thermal separation of Cre accumulation (at low temperature) from Cre enzyme activity (at higher temperature) could have prevented the premature excision of its own encoding gene, and lead to high expression level thereby increasing recombination frequency.


Assuntos
Hordeum/genética , Integrases/genética , Plantas Geneticamente Modificadas/genética , Temperatura Baixa , Dosagem de Genes , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Recombinação Genética
6.
Mini Rev Med Chem ; 17(13): 1292-1315, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27719667

RESUMO

BACKGROUND: Vaccines produced in plants have opened up new opportunities in vaccination. OBJECTIVE: Among the various categories of vaccines, the recombinant vaccine is generally regarded as the most economical and safest type because it cannot cause disease and does not require large-scale cultivation of pathogens. Due to the low cost of their cultivation, plants may represent viable alternative platforms for producing subunit vaccines. Genetic engineering of plastids is the innovation of the last three decades and has numerous benefits when compared to nuclear transformation. Due to the high level of expression, oral vaccines produced in transplastomic plants do not have to be purified as they can be consumed raw, which, therefore, reduces the cost of preparation, transportation and handling of the vaccines. Oral vaccination also excludes the risk of other infections or contaminations, while compartmentation of the plant cell provides an excellent encapsulation to the antigen within the plastid. RESULTS & CONCLUSION: Herein we review the main biotechnological and immunological aspects of the progress achieved in the field of plastid derived edible vaccines during the last decade. As there is a public debate against genetically modified crops, the advantages and limitations of oral vaccines are also discussed.


Assuntos
Agricultura Molecular , Plastídeos/metabolismo , Vacinas/imunologia , Biotecnologia , Engenharia Genética , Humanos , Plantas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas/genética , Vacinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA