Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 13(7): 3352-7, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23805835

RESUMO

Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.


Assuntos
Modelos Teóricos , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Absorção , Simulação por Computador , Desenho Assistido por Computador , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
2.
Adv Mater ; 33(2): e2004053, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33236792

RESUMO

Graphene holds promise for thin, ultralightweight, and high-performance nanoelectromechanical transducers. However, graphene-only devices are limited in size due to fatigue and fracture of suspended graphene membranes. Here, a lightweight, flexible, transparent, and conductive bilayer composite of polyetherimide and single-layer graphene is prepared and suspended on the centimeter scale with an unprecedentedly high aspect ratio of 105 . The coupling of the two components leads to mutual reinforcement and creates an ultrastrong membrane that supports 30 000 times its own weight. Upon electromechanical actuation, the membrane pushes a massive amount of air and generates high-quality acoustic sound. The energy efficiency is ≈10-100 times better than state-of-the-art electrodynamic speakers. The bilayer membrane's combined properties of electrical conductivity, mechanical strength, optical transparency, thermal stability, and chemical resistance will promote applications in electronics, mechanics, and optics.

3.
Nat Nanotechnol ; 4(3): 167-72, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19265846

RESUMO

The ability of the scanning tunnelling microscope to manipulate single atoms and molecules has allowed a single bit of information to be represented by a single atom or molecule. Although such information densities remain far beyond the reach of real-world devices, it has been assumed that the finite spacing between atoms in condensed-matter systems sets a rigid upper limit on information density. Here, we show that it is possible to exceed this limit with a holographic method that is based on electron wavefunctions rather than free-space optical waves. Scanning tunnelling microscopy and holograms comprised of individually manipulated molecules are used to create and detect electronically projected objects with features as small as approximately 0.3 nm, and to achieve information densities in excess of 20 bits nm-2. Our electronic quantum encoding scheme involves placing tens of bits of information into a single fermionic state.

4.
Science ; 319(5864): 782-7, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18258909

RESUMO

Quantum phase is not directly observable and is usually determined by interferometric methods. We present a method to map complete electron wave functions, including internal quantum phase information, from measured single-state probability densities. We harness the mathematical discovery of drum-like manifolds bearing different shapes but identical resonances, and construct quantum isospectral nanostructures with matching electronic structure but divergent physical structure. Quantum measurement (scanning tunneling microscopy) of these "quantum drums"-degenerate two-dimensional electron states on the copper(111) surface confined by individually positioned carbon monoxide molecules-reveals that isospectrality provides an extra topological degree of freedom enabling robust quantum state transplantation and phase extraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA