Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 33(30): 12337-51, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23884940

RESUMO

Gamma frequency (30-80 Hz) oscillations are implicated in memory processing. Such rhythmic activity can be generated intrinsically in the CA3 region of the hippocampus from where it can propagate to the CA1 area. To uncover the synaptic mechanisms underlying the intrahippocampal spread of gamma oscillations, we recorded local field potentials, as well as action potentials and synaptic currents in anatomically identified CA1 and CA3 neurons during carbachol-induced gamma oscillations in mouse hippocampal slices. The firing of the vast majority of CA1 neurons and all CA3 neurons was phase-coupled to the oscillations recorded in the stratum pyramidale of the CA1 region. The predominant synaptic input to CA1 interneurons was excitatory, and their discharge followed the firing of CA3 pyramidal cells at a latency indicative of monosynaptic connections. Correlation analysis of the input-output characteristics of the neurons and local pharmacological block of inhibition both agree with a model in which glutamatergic CA3 input controls the firing of CA1 interneurons, with local pyramidal cell activity having a minimal role. The firing of phase-coupled CA1 pyramidal cells was controlled principally by their inhibitory inputs, which dominated over excitation. Our results indicate that the synchronous firing of CA3 pyramidal cells rhythmically recruits CA1 interneurons and that this feedforward inhibition generates the oscillatory activity in CA1. These findings identify distinct synaptic mechanisms underlying the generation of gamma frequency oscillations in neighboring hippocampal subregions.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Neurônios Colinérgicos/fisiologia , Eletroencefalografia , Retroalimentação Fisiológica/fisiologia , Inibição Neural/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Eletroencefalografia/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Interneurônios/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos , Modelos Neurológicos , Técnicas de Cultura de Órgãos , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
2.
J Comput Neurosci ; 33(2): 257-84, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22350741

RESUMO

Neuronal impedance characterizes the magnitude and timing of the subthreshold response of a neuron to oscillatory input at a given frequency. It is known to be influenced by both the morphology of the neuron and the presence of voltage-gated conductances in the cell membrane. Most existing theoretical accounts of neuronal impedance considered the effects of voltage-gated conductances but neglected the spatial extent of the cell, while others examined spatially extended dendrites with a passive or spatially uniform quasi-active membrane. We derived an explicit mathematical expression for the somatic input impedance of a model neuron consisting of a somatic compartment coupled to an infinite dendritic cable which contained voltage-gated conductances, in the more general case of non-uniform dendritic membrane potential. The validity and generality of this model was verified through computer simulations of various model neurons. The analytical model was then applied to the analysis of experimental data from real CA1 pyramidal neurons. The model confirmed that the biophysical properties and predominantly dendritic localization of the hyperpolarization-activated cation current I (h) were important determinants of the impedance profile, but also predicted a significant contribution from a depolarization-activated fast inward current. Our calculations also implicated the interaction of I (h) with amplifying currents as the main factor governing the shape of the impedance-frequency profile in two types of hippocampal interneuron. Our results provide not only a theoretical advance in our understanding of the frequency-dependent behavior of nerve cells, but also a practical tool for the identification of candidate mechanisms that determine neuronal response properties.


Assuntos
Fenômenos Biofísicos/fisiologia , Região CA1 Hipocampal/citologia , Dendritos/fisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/citologia , Animais , Animais Recém-Nascidos , Biofísica , Fármacos Cardiovasculares/farmacologia , Estimulação Elétrica , Análise de Fourier , Técnicas In Vitro , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
3.
Phytother Res ; 26(3): 354-62, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21717515

RESUMO

Traditionally, Echinacea preparations are used as antiinflammatory agents and immune-enhancers. In addition to these effects, their anxiolytic potency has been recognized recently in laboratory tests. Our aim in this study was to uncover the potential effects of an Echinacea preparation on neuronal operations in the hippocampus, a brain region that is involved in anxiety and anxiety-related behaviors. Using in vitro electrophysiological techniques, we observed that excitatory synaptic transmission in hippocampal slices was significantly suppressed by an Echinacea extract found to be effective in anxiety tests. In contrast, no change in inhibitory synaptic transmission could be detected upon application of this extract. In addition, our experiments revealed that at low concentration the Echinacea extract reduced the spiking activity of CA1 pyramidal cells, while at high concentration increased it. This latter observation was parallel to the reduction in the magnitude of the h-current-mediated voltage responses in pyramidal cells. At any concentrations, the passive membrane properties of CA1 pyramidal cells were found to be unaltered by the Echinacea extract. In summary, the Echinacea extract can significantly regulate excitatory, but not inhibitory, synaptic transmission in the hippocampus, and this action might be involved in its anxiolytic effects observed in behaviour tests.


Assuntos
Echinacea/química , Hipocampo/efeitos dos fármacos , Fitoterapia , Preparações de Plantas/farmacologia , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Ansiolíticos/química , Ansiolíticos/farmacologia , Fenômenos Eletrofisiológicos , Hipocampo/fisiologia , Masculino , Neurônios/fisiologia , Técnicas de Patch-Clamp , Preparações de Plantas/administração & dosagem , Preparações de Plantas/química , Raízes de Plantas/química , Células Piramidais/fisiologia , Ratos , Ratos Wistar
4.
J Physiol ; 588(Pt 12): 2109-32, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20421280

RESUMO

The intrinsic properties of distinct types of neuron play important roles in cortical network dynamics. One crucial determinant of neuronal behaviour is the cell's response to rhythmic subthreshold input, characterised by the input impedance, which can be determined by measuring the amplitude and phase of the membrane potential response to sinusoidal currents as a function of input frequency. In this study, we determined the impedance profiles of anatomically identified neurons in the CA1 region of the rat hippocampus (pyramidal cells as well as interneurons located in the stratum oriens, including OLM cells, fast-spiking perisomatic region-targeting interneurons and cells with axonal arbour in strata oriens and radiatum). The basic features of the impedance profiles, as well as the passive membrane characteristics and the properties of the sag in the voltage response to negative current steps, were cell-type specific. With the exception of fast-spiking interneurons, all cell types showed subthreshold resonance, albeit with distinct features. The HCN channel blocker ZD7288 (10 microM) eliminated the resonance and changed the shape of the impedance curves, indicating the involvement of the hyperpolarization-activated cation current I(h). Whole-cell voltage-clamp recordings uncovered differences in the voltage-dependent activation and kinetics of I(h) between different cell types. Biophysical modelling demonstrated that the cell-type specificity of the impedance profiles can be largely explained by the properties of I(h) in combination with the passive membrane characteristics. We conclude that differences in I(h) and passive membrane properties result in a cell-type-specific response to inputs at given frequencies, and may explain, at least in part, the differential involvement of distinct types of neuron in various network oscillations.


Assuntos
Membrana Celular/fisiologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Canais de Potássio/metabolismo , Potássio/metabolismo , Células Piramidais/fisiologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Capacitância Elétrica , Impedância Elétrica , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Potenciais da Membrana , Modelos Neurológicos , Oscilometria , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Ratos Wistar
5.
Eur J Neurosci ; 29(2): 319-27, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19200237

RESUMO

Studies in brain slices have provided a wealth of data on the basic features of neurons and synapses. In the intact brain, these properties may be strongly influenced by ongoing network activity. Although physiologically realistic patterns of network activity have been successfully induced in brain slices maintained in interface-type recording chambers, they have been harder to obtain in submerged-type chambers, which offer significant experimental advantages, including fast exchange of pharmacological agents, visually guided patch-clamp recordings, and imaging techniques. Here, we investigated conditions for the emergence of network oscillations in submerged slices prepared from the hippocampus of rats and mice. We found that the local oxygen level is critical for generation and propagation of both spontaneously occurring sharp wave-ripple oscillations and cholinergically induced fast oscillations. We suggest three ways to improve the oxygen supply to slices under submerged conditions: (i) optimizing chamber design for laminar flow of superfusion fluid; (ii) increasing the flow rate of superfusion fluid; and (iii) superfusing both surfaces of the slice. These improvements to the recording conditions enable detailed studies of neurons under more realistic conditions of network activity, which are essential for a better understanding of neuronal network operation.


Assuntos
Hipocampo/fisiologia , Hipóxia Encefálica/prevenção & controle , Hipóxia Encefálica/fisiopatologia , Rede Nervosa/fisiologia , Consumo de Oxigênio/fisiologia , Oxigênio/farmacologia , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos/fisiologia , Cultura em Câmaras de Difusão/métodos , Cultura em Câmaras de Difusão/tendências , Hipocampo/citologia , Hipóxia Encefálica/metabolismo , Masculino , Rede Nervosa/citologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Cultura de Órgãos , Oxigênio/metabolismo , Técnicas de Patch-Clamp , Perfusão/instrumentação , Perfusão/métodos , Ratos , Transmissão Sináptica/fisiologia
6.
J Physiol ; 586(16): 3893-915, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18565991

RESUMO

The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies the hyperpolarization-activated, cyclic nucleotide-gated non-selective cation (HCN) channel was shown to participate in theta synchronization of the medial septum. Here, we tested the hypothesis that HCN channel expression correlates with theta modulated firing behaviour of MS neurons by a combined anatomical and electrophysiological approach. HCN-expressing neurons represented a subpopulation of GABAergic cells in the MS partly overlapping with parvalbumin (PV)-containing neurons. Rhythmic firing in the theta frequency range was characteristic of all HCN-expressing neurons. In contrast, only a minority of HCN-negative cells displayed theta related activity. All HCN cells had tight phase coupling to hippocampal theta waves. As a group, PV-expressing HCN neurons had a marked bimodal phase distribution, whereas PV-immunonegative HCN neurons did not show group-level phase preference despite significant individual phase coupling. Microiontophoretic blockade of HCN channels resulted in the reduction of discharge frequency, but theta rhythmic firing was perturbed only in a few cases. Our data imply that HCN-expressing GABAergic neurons provide rhythmic drive in all phases of the hippocampal theta activity. In most MS theta cells rhythm genesis is apparently determined by interactions at the level of the network rather than by the pacemaking property of HCN channels alone.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Rede Nervosa/fisiologia , Neurônios/fisiologia , Canais de Potássio/metabolismo , Núcleos Septais/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Masculino , Ratos , Ratos Wistar , Receptores de GABA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA