Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643911

RESUMO

Advanced glycation end products (AGEs) can be caused during a glycoxidation reaction. This reaction is associated with complications of diabetes and the consequences of health problems. Therefore, we are exploring the prohibitory effect of highland barley protein hydrolysates (HBPHs) on AGE formation. Herein, first extracted the protein from highland barley with various pH conditions and then hydrolyzed using four different proteolytic enzymes (flavourzyme, trypsin, papain, pepsin) under different degrees of hydrolysis. We assessed three degrees of hydrolysates (lowest, middle, highest) of enzymes used to characterize the antioxidant activity and physicochemical properties. Among all the hydrolysates, flavourzyme-treated hydrolysates F-1, F-2, and F-3 indicated the high ability to scavenge DPPH (IC50 values of 0.97 %, 0.63 %, and 0.90 %), structural and functional properties. Finally, the inhibitory effect of the most active hydrolysates F-1, F-2, and F-3 against the AGEs formation was evaluated in multiple glucose-glycated bovine serum albumin (BSA) systems. Additionally, in a BSA system, F-3 exhibited the strong antiglycation activity, effectively suppressed the non-fluorescent AGE (CML), and the fructosamine level. Moreover, it decreased carbonyl compounds while also preventing the loss of thiol groups. Our results would be beneficial in the application of the food industry as a potential antiglycation agent for several chronic diseases.


Assuntos
Produtos Finais de Glicação Avançada , Hordeum , Proteínas de Plantas , Hidrolisados de Proteína , Soroalbumina Bovina , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Hordeum/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Soroalbumina Bovina/química , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Hidrólise , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Glicosilação/efeitos dos fármacos
2.
Int J Biol Macromol ; 235: 123739, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36806768

RESUMO

Bacterial cellulose (BC) with good biocompatibility and superior mechanical properties has broad applications. BC functionalized with silver nanoparticles (AgNPs) has been assessed as an antimicrobial membrane for wound-healing treatment. During the AgNPs synthesis, avoiding the use of toxic chemicals is very necessary for the development of environmentally friendly procedures. Herein, a Komagataeibacter xylinus-based direct biosynthetic method to fabricate D-Saccharic acid potassium salt (SA)-grafted BC (SABC) through in situ bacterial metabolism was firstly explored. Subsequently, the SABC pellicles were immersed in AgNO3 solution for ion-exchanged process, and the silver nanoparticles (AgNPs) with diameter of ∼25.2 nm were in situ synthesized on SABC nanofiber surfaces by thermal reduction instead of using a reducing agent. The morphology and microstructure of SABC/AgNPs pellicles were analyzed by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectra. Moreover, antibacterial activity measurement performed against the Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) by disk diffusion and plate count methods, showed high-efficiency bacteria-killing performance of SABC/AgNPs pellicles. This work proposed a new method by using microbial metabolism to prepare BC pellicles with functional groups, and antimicrobial films containing AgNPs was prepared by thermal reduction, exhibiting valuable prospects in wound healing treatment.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Celulose/química , Staphylococcus aureus , Nanopartículas Metálicas/química , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Difração de Raios X
3.
Food Funct ; 11(10): 9048-9056, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33021614

RESUMO

Type-II diabetes mellitus (T2DM) has become one of the most prevalent diseases on Earth and some treatments have been developed to manage it. One intestinal enzyme α-amylase can break down starch to glucose. Inhibiting its activity will control blood glucose and provide an essential approach for the management of T2DM. Alpha-amylase inhibitor (α-AI) specifically inhibits the activity of α-amylase, and reduces the blood glucose level efficiently. To develop a novel α-AI, the red seaweed laver (Porphyra spp.) was exploited in this work, whose extracts contain polysaccharides showing an inhibitory effect against α-amylase. The crude polysaccharides were extracted using hot water (85 °C) and degraded to low-molecular-weight polysaccharides with 7% of H2O2. One polysaccharide PD-1 exhibiting a competitive binding mode with an IC50 of 12.72 mg mL-1 was separated from these degraded polysaccharides, showing approximately 98.78% of α-amylase inhibition activity. In vivo, PD-1 could efficiently suppress postprandial blood glucose levels in normal and diabetic rats. The polysaccharide inhibitor from red seaweed laver could be regarded as a novel functional food ingredient in T2DM management.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Polissacarídeos/administração & dosagem , Porphyra/química , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Ratos , Alga Marinha/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA