Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(31): e2309874, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38453676

RESUMO

Garnet-type solid-state electrolytes attract abundant attentions due to the broad electrochemical window and remarkable thermal stability while their poor ionic conductivity obstructs their widespread application in all-solid-state batteries. Herein, the enhanced ionic conductivity of garnet-type solid electrolytes is achieved by partially substituting O2- sites with Cl- anions, which effectively reduce Li+ migration barriers while preserving the highly conductive cubic phase of garnet-type solid-state electrolytes. This substitution not only weakens the anchoring effect of anions on Li+ to widen the size of Li+ diffusion channel but also optimizes the occupancy of Li+ at different sites, resulting in a substantial reduction of the Li+ migration barrier and a notable improvement in ionic conductivity. Leveraging these advantageous properties, the developed Li6.35La3Zr1.4Ta0.6O11.85-Cl0.15 (LLZTO-0.15Cl) electrolyte demonstrates high Li+ conductivity of 4.21×10-6 S cm-1. When integrated with LiFePO4 (LFP) cathode and metallic lithium anode, the LLZTO-0.15Cl electrolyte enables the solid-state battery to operate for more than 100 cycles with a high capacity retention of 76.61% and superior Coulombic efficiency of 99.48%. This work shows a new strategy for modulating anionic framework to enhance the conductivity of garnet-type solid-state electrolytes.

2.
Small ; : e2404483, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046318

RESUMO

Lithium-oxygen (Li-O2) battery with large theoretical energy density (≈3500 Wh kg-1) is one of the most promising energy storage and conversion systems. However, the slow kinetics of oxygen electrode reactions inhibit the practical application of Li-O2 battery. Thus, designing efficient electrocatalysts is crucial to improve battery performance. Here, Ti3C2 MXene/Mo4/3B2-x MBene superlattice is fabricated its electrocatalytic activity toward oxygen redox reactions in Li-O2 battery is studied. It is found that the built-in electric field formed by a large work function difference between Ti3C2 and Mo4/3B2-x will power the charge transfer at the interface from titanium (Ti) site in Ti3C2 to molybdenum (Mo) site in Mo4/3B2-x. This charge transfer increases the electron density in 4d orbital of Mo site and decreases the d-band center of Mo site, thus optimizing the adsorption of intermediate product LiO2 at Mo site and accelerating the kinetics of oxygen electrode reactions. Meanwhile, the formed film-like discharge products (Li2O2) improve the contact with electrode and facilitate the decomposition of Li2O2. Based on the above advantages, the Ti3C2 MXene/Mo4/3B2-x MBene superlattice-based Li-O2 battery exhibits large discharge specific capacity (17 167 mAh g-1), low overpotential (1.16 V), and superior cycling performance (475 cycles).

3.
Small ; 20(24): e2308995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168894

RESUMO

Practical applications of lithium metal batteries are limited by unstable solid electrolyte interphase (SEI) and uncontrollable dendrite Li deposition. Regulating the solvation structure of Li+ via modifying electrolyte components enables optimizing the structure of the SEI and realizing dendrite-free Li deposition. In this work, it is found that the ionic-dipole interactions between the electron-deficient B atoms in lithium oxalyldifluoro borate (LiDFOB) and the O atoms in the DME solvent molecule can weaken the interaction between the DME molecule and Li+, accelerating the desolvation of Li+. On this basis, the ionic-dipole interactions facilitate the entry of abundant anions into the inner solvation sheath of Li+, which promotes the formation of inorganic-rich SEI. In addition, the interaction between DFOB- and DME molecules reduces the highest occupied molecular orbital energy level of DME molecules in electrolytes, which improves the oxidative stability of the electrolytes system. As a result, the Li||Li cells in LiDFOB-containing electrolytes exhibit an excellent cyclability of over 1800 h with a low overpotential of 18.2 mV, and the Li||LiFePO4 full cells display a high-capacity retention of 93.4% after 100 cycles with a high Coulombic efficiency of 99.3%.

4.
ACS Nano ; 18(18): 11849-11862, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38662647

RESUMO

Designing bifunctional electrocatalysts to boost oxygen redox reactions is critical for high-performance lithium-oxygen batteries (LOBs). In this work, high-entropy spinel (Co0.2Mn0.2Ni0.2Fe0.2Cr0.2)3O4 (HEOS) is fabricated by modulating the internal configuration entropy of spinel and studied as the oxygen electrode catalyst in LOBs. Under the high-entropy atomic environment, the Co-O octahedron in spinel undergoes asymmetric deformation, and the reconfiguration of the electron structure around the Co sites leads to the upward shift of the d-orbital centers of the Co sites toward the Fermi level, which is conducive to the strong adsorption of redox intermediate LiO2 on the surface of the HEOS, ultimately forming a layer of a highly dispersed Li2O2 thin film. Thin-film Li2O2 is beneficial for ion diffusion and electron transfer at the electrode-electrolyte interface, which makes the product easy to decompose during the charge process, ultimately accelerating the kinetics of oxygen redox reactions in LOBs. Based on the above advantages, HEOS-based LOBs deliver high discharge/charge capacity (12.61/11.72 mAh cm-2) and excellent cyclability (424 cycles). This work broadens the way for the design of cathode catalysts to improve oxygen redox kinetics in LOBs.

5.
Chem Commun (Camb) ; 60(55): 7045-7048, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38896453

RESUMO

An intermolecular hydrogen bond between 2,5-dihydroxyterephthalic acid and the anions in the Li+ solvation shell is constructed to promote the formation of a LiF-rich SEI on a metallic Li electrode. Li metal batteries with improved cyclability (140 cycles under an N/P ratio of 4.9) and high capacity retention (90%) are eventually obtained.

6.
ACS Appl Mater Interfaces ; 16(9): 11377-11388, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38388356

RESUMO

Ni-rich layered oxides LiNixCoyMn1-x-yO2 (NCMs, x > 0.8) are the most promising cathode candidates for Li-ion batteries because of their superior specific capacity and cost affordability. Unfortunately, NCMs suffer from a series of formidable challenges such as structural instability and incompatibility with commonly used electrolytes, which seriously hamper their practical applications on a large scale. Herein, the Al/Ta codoping modification strategy is proposed to improve the performance of the LiNi0.83Co0.1Mn0.07O2 cathode, and the as-prepared Al/Ta-modified LiNi0.83Co0.1Mn0.07O2 delivers exceptional cycling stability with a capacity retention of 97.4% after 150 cycles at 1C and an excellent rate performance with a high capacity of 143.2 mAh g-1 even at 3C. Based on the experimental study, it is found that the structural stability of NCM is strengthened due to the regulated coordination of oxygen by introducing a robust Ta-O covalent bond, which prevents the layered structure from collapsing. Moreover, the reconstructed rock-salt-like surface is capable of effectively inhibiting interfacial side reactions as well as the overgrowth of the cathode-electrolyte interface. Theoretically, the energy of Li/Ni mixing is significantly increased with the introduction of Al and Ta elements in Al/Ta codoped NCM, leading to inhibited adverse phase transition during cycling. A feasible pathway for designing and developing advanced Ni-rich cathode materials for Li-ion batteries is provided in this work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA