Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Mol Med ; 30(1): 15, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254035

RESUMO

BACKGROUND: In heart failure (HF), mitochondrial dysfunction and metabolic remodeling lead to a reduction in energy productivity and aggravate cardiomyocyte injury. Supplementation with α-ketoglutarate (AKG) alleviated myocardial hypertrophy and fibrosis in mice with HF and improved cardiac insufficiency. However, the myocardial protective mechanism of AKG remains unclear. We verified the hypothesis that AKG improves mitochondrial function by upregulating NAD+ levels and activating silent information regulator 2 homolog 1 (SIRT1) in cardiomyocytes. METHODS: In vivo, 2% AKG was added to the drinking water of mice undergoing transverse aortic constriction (TAC) surgery. Echocardiography and biopsy were performed to evaluate cardiac function and pathological changes. Myocardial metabolomics was analyzed by liquid chromatography‒mass spectrometry (LC‒MS/MS) at 8 weeks after surgery. In vitro, the expression of SIRT1 or PINK1 proteins was inhibited by selective inhibitors and siRNA in cardiomyocytes stimulated with angiotensin II (AngII) and AKG. NAD+ levels were detected using an NAD test kit. Mitophagy and ferroptosis levels were evaluated by Western blotting, qPCR, JC-1 staining and lipid peroxidation analysis. RESULTS: AKG supplementation after TAC surgery could alleviate myocardial hypertrophy and fibrosis and improve cardiac function in mice. Metabolites of the malate-aspartate shuttle (MAS) were increased, but the TCA cycle and fatty acid metabolism pathway could be inhibited in the myocardium of TAC mice after AKG supplementation. Decreased NAD+ levels and SIRT1 protein expression were observed in heart of mice and AngII-treated cardiomyocytes. After AKG treatment, these changes were reversed, and increased mitophagy, inhibited ferroptosis, and alleviated damage in cardiomyocytes were observed. When the expression of SIRT1 was inhibited by a selective inhibitor and siRNA, the protective effect of AKG was suppressed. CONCLUSION: Supplementation with AKG can improve myocardial hypertrophy, fibrosis and chronic cardiac insufficiency caused by pressure overload. By increasing the level of NAD+, the SIRT-PINK1 and SIRT1-GPX4 signaling pathways are activated to promote mitophagy and inhibit ferroptosis in cardiomyocytes, which ultimately alleviates cardiomyocyte damage.


Assuntos
Estenose da Valva Aórtica , Ferroptose , Insuficiência Cardíaca , Ácidos Cetoglutáricos , Mitofagia , Angiotensina II , Cromatografia Líquida , Ferroptose/efeitos dos fármacos , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Hipertrofia , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/uso terapêutico , Mitofagia/efeitos dos fármacos , Miócitos Cardíacos , NAD , Proteínas Quinases , RNA Interferente Pequeno , Sirtuína 1 , Espectrometria de Massas em Tandem , Animais , Camundongos
2.
Mol Med ; 30(1): 76, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840067

RESUMO

BACKGROUND: Advanced glycation end product-modified low-density lipoprotein (AGE-LDL) is related to inflammation and the development of atherosclerosis. Additionally, it has been demonstrated that receptor for advanced glycation end products (RAGE) has a role in the condition known as calcific aortic valve disease (CAVD). Here, we hypothesized that the AGE-LDL/RAGE axis could also be involved in the pathophysiological mechanism of CAVD. METHODS: Human aortic valve interstitial cells (HAVICs) were stimulated with AGE-LDL following pre-treatment with or without interleukin 37 (IL-37). Low-density lipoprotein receptor deletion (Ldlr-/-) hamsters were randomly allocated to chow diet (CD) group and high carbohydrate and high fat diet (HCHFD) group. RESULTS: AGE-LDL levels were significantly elevated in patients with CAVD and in a hamster model of aortic valve calcification. Our in vitro data further demonstrated that AGE-LDL augmented the expression of intercellular cell adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6) and alkaline phosphatase (ALP) in a dose-dependent manner through NF-κB activation, which was attenuated by nuclear factor kappa-B (NF-κB) inhibitor Bay11-7082. The expression of RAGE was augmented in calcified aortic valves, and knockdown of RAGE in HAVICs attenuated the AGE-LDL-induced inflammatory and osteogenic responses as well as NF-κB activation. IL-37 suppressed inflammatory and osteogenic responses and NF-κB activation in HAVICs. The vivo experiment also demonstrate that supplementation with IL-37 inhibited valvular inflammatory response and thereby suppressed valvular osteogenic activities. CONCLUSIONS: AGE-LDL promoted inflammatory responses and osteogenic differentiation through RAGE/NF-κB pathway in vitro and aortic valve lesions in vivo. IL-37 suppressed the AGE-LDL-induced inflammatory and osteogenic responses in vitro and attenuated aortic valve lesions in a hamster model of CAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Produtos Finais de Glicação Avançada , Lipoproteínas LDL , NF-kappa B , Osteogênese , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Produtos Finais de Glicação Avançada/metabolismo , NF-kappa B/metabolismo , Humanos , Calcinose/metabolismo , Calcinose/patologia , Calcinose/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/etiologia , Estenose da Valva Aórtica/patologia , Cricetinae , Osteogênese/efeitos dos fármacos , Masculino , Lipoproteínas LDL/metabolismo , Modelos Animais de Doenças , Feminino , Pessoa de Meia-Idade , Proteínas Glicadas
3.
BMC Med ; 21(1): 252, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443055

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is the most prevalent valvular disease and has high morbidity and mortality. CAVD is characterized by complex pathophysiological processes, including inflammation-induced osteoblastic differentiation in aortic valve interstitial cells (AVICs). Novel anti-CAVD agents are urgently needed. Protein tyrosine phosphatase nonreceptor type 22 (PTPN22), an intracellular nonreceptor-like protein tyrosine phosphatase, is involved in several chronic inflammatory diseases, including rheumatoid arthritis and diabetes. However, it is unclear whether PTPN22 is involved in the pathogenesis of CAVD. METHODS: We obtained the aortic valve tissue from human and cultured AVICs from aortic valve. We established CAVD mice model by wire injury. Transcriptome sequencing, western bolt, qPCR, and immunofluorescence were performed to elucidate the molecular mechanisms. RESULTS: Here, we determined that PTPN22 expression was upregulated in calcific aortic valve tissue, AVICs treated with osteogenic medium, and a mouse model of CAVD. In vitro, overexpression of PTPN22 induced osteogenic responses, whereas siRNA-mediated PTPN22 knockdown abolished osteogenic responses and mitochondrial stress in the presence of osteogenic medium. In vivo, PTPN22 ablation ameliorated aortic valve lesions in a wire injury-induced CAVD mouse model, validating the pathogenic role of PTPN22 in CAVD. Additionally, we discovered a novel compound, 13-hydroxypiericidin A 10-O-α-D-glucose (1 → 6)-ß-D-glucoside (S18), in a marine-derived Streptomyces strain that bound to PTPN22 with high affinity and acted as a novel inhibitor. Incubation with S18 suppressed osteogenic responses and mitochondrial stress in human AVICs induced by osteogenic medium. In mice with aortic valve injury, S18 administration markedly alleviated aortic valve lesions. CONCLUSION: PTPN22 plays an essential role in the progression of CAVD, and inhibition of PTPN22 with S18 is a novel option for the further development of potent anti-CAVD drugs. Therapeutic inhibition of PTPN22 retards aortic valve calcification through modulating mitochondrial dysfunction in AVICs.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Humanos , Animais , Camundongos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Monoéster Fosfórico Hidrolases , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/genética , Células Cultivadas , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo
4.
BMC Cardiovasc Disord ; 23(1): 104, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823527

RESUMO

OBJECTIVE: Recent studies have found that polycyclic aromatic hydrocarbons (PAHs) exposure may increase the risk of cardiovascular disease. The present study aimed to explore the association between PAHs exposure and severe abdominal aortic calcification (AAC) in adults. METHODS: Data were collected from the 2013-2014 National Health and Nutrition Examination Survey. PAHs exposure was analyzed from urinary mono hydroxylated metabolites of PAHs. Logistic regression models and subgroup analysis were performed to explore the association of PAHs exposure with severe AAC prevalence. RESULTS: A total of 1,005 eligible individuals were recruited into the study. After adjusting for confounding factors, those with the highest quartiles of 1-hydroxynaphthalene (1-NAP: OR 2.19, 95% CI 1.03-4.68, Pfor trend < 0.001), 2-hydroxynaphthalene (2-NAP: OR 2.22, 95% CI 1.04-4.64, Pfor trend < 0.001) and 1-hydroxypyrene (1-PYR: OR 2.15, 95% CI 1.06-4.33, Pfor trend < 0.001) were associated with an increased prevalence of severe AAC in the adults compared to those who in the lowest quartile. CONCLUSION: This study found that urinary 1-NAP, 2-NAP and 1-PYR were positively associated with severe AAC prevalence in adults.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Humanos , Adulto , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Inquéritos Nutricionais , Naftalenossulfonatos , Biomarcadores
5.
Biochem Biophys Res Commun ; 609: 176-182, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35452958

RESUMO

Doxorubicin (DOX) is a commonly used antitumor drug. However, it may cause severe cardiotoxicity, apoptosis being a major change. A recent report indicates that miR-147 expression is decreased in the myocardium of a myocardial infarction model, suggesting a potential role of this miRNA in DOX-induced cardiomyocyte toxicity. In this study, freshly isolated neonatal pig cardiomyocytes were used; following transfection of a miR-147-y mimic, the cell death induced by DOX was alleviated, represented by augmented mitophagy [indicated by a decrease in P62, and increases in LC3, PINK1, parkin mRNA, LC3Ⅱ/Ⅰ, beclin-1, PINK1, and parkin including p-parkin (Ser65) protein expression], prohibited cell apoptosis as determined by TUNEL staining, and the suppression of caspase-3 transcription and cleaved caspase-3 translation. In cells transfected with an miR-147-y inhibitor, DOX-induced mitophagy was decreased, while apoptosis was increased. Additionally, RAPTOR gene silencing in cardiomyocytes exposed to DOX increased the rate of mitophagy and decreased that of apoptosis as compared with the treatment with DOX alone. Moreover, RAPTOR overexpression downregulated the rate of mitophagy and increased that of apoptosis in cells exposed to DOX. RAPTOR was confirmed as the target gene of miR-147-y based on the results of luciferase reporter gene assays and the opposite effects of the miR-147-y mimic and miR-147-y inhibitor on RAPTOR expression. In summary, our study suggests that miR-147-y mediates DOX-induced cardiomyocyte mitophagy while suppresses apoptosis by targeting RAPTOR, thus playing a protective role in DOX-induced cardiomyocyte damage.


Assuntos
MicroRNAs , Miócitos Cardíacos , Animais , Apoptose , Caspase 3/metabolismo , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , MicroRNAs/metabolismo , Mitofagia , Miócitos Cardíacos/metabolismo , Proteínas Quinases/metabolismo , Suínos , Ubiquitina-Proteína Ligases/metabolismo
6.
Inflamm Res ; 71(5-6): 681-694, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35411432

RESUMO

OBJECTIVE: Inflammatory infiltration in aortic valves promotes calcific aortic valve disease (CAVD) progression. While soluble extracellular matrix (ECM) proteins induce inflammatory responses in aortic valve interstitial cells (AVICs), the impact of monocytes on AVIC inflammatory responses is unknown. We tested the hypothesis that monocytes enhance AVIC inflammatory responses to soluble ECM protein in this study. METHODS: Human AVICs isolated from normal aortic valves were cocultured with monocytes and stimulated with soluble ECM protein (matrilin-2). ICAM-1 and IL-6 productions were assessed. YAP and NF-κB phosphorylation were analyzed. Recombinant CD18, neutralizing antibodies against ß2-integrin or ICAM-1, and inhibitor of YAP or NF-κB were applied. RESULTS: AVIC expression of ICAM-1 and IL-6 was markedly enhanced by the presence of monocytes, although matrilin-2 did not affect monocyte production of ICAM-1 or IL-6. Matrilin-2 up-regulated the expression of monocyte ß2-integrin and AVIC ICAM-1, leading to monocyte-AVIC adhesion. Neutralizing ß2-integrin or ICAM-1 in coculture suppressed monocyte adhesion to AVICs and the expression of ICAM-1 and IL-6. Recombinant CD18 enhanced the matrilin-2-induced ICAM-1 and IL-6 expression in AVIC monoculture. Further, stimulation of coculture with matrilin-2 induced greater YAP and NF-κB phosphorylation. Inhibiting either YAP or NF-κB markedly suppressed the inflammatory response to matrilin-2 in coculture. CONCLUSION: Monocyte ß2-integrin interacts with AVIC ICAM-1 to augment AVIC inflammatory responses to soluble matrilin-2 through enhancing the activation of YAP and NF-κB signaling pathways. Infiltrated monocytes may promote valvular inflammation through cell-cell interaction with AVICs to enhance their sensitivity to damage-associated molecular patterns.


Assuntos
Valva Aórtica , Monócitos , Valva Aórtica/metabolismo , Antígenos CD18/metabolismo , Células Cultivadas , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , Proteínas Matrilinas/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(7): 1631-1636, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137840

RESUMO

Calcific aortic valve disease is a chronic inflammatory process, and aortic valve interstitial cells (AVICs) from diseased aortic valves express greater levels of osteogenic factors in response to proinflammatory stimulation. Here, we report that lower cellular levels of IL-37 in AVICs of diseased human aortic valves likely account for augmented expression of bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP) following stimulation of Toll-like receptor (TLR) 2 or 4. Treatment of diseased AVICs with recombinant human IL-37 suppresses the levels of BMP-2 and ALP as well as calcium deposit formation. In mice, aortic valve thickening is observed when exposed to a TLR4 agonist or a high fat diet for a prolonged period; however, mice expressing human IL-37 exhibit significantly lower BMP-2 levels and less aortic valve thickening when subjected to the same regimens. A high fat diet in mice results in oxidized low-density lipoprotein (oxLDL) deposition in aortic valve leaflets. Moreover, the osteogenic responses in human AVICs induced by oxLDL are suppressed by recombinant IL-37. Mechanistically, reduced osteogenic responses to oxLDL in human AVICs are associated with the ability of IL-37 to inhibit NF-κB and ERK1/2. These findings suggest that augmented expression of osteogenic factors in AVICs of diseased aortic valves from humans is at least partly due to a relative IL-37 deficiency. Because recombinant IL-37 suppresses the osteogenic responses in human AVICs and alleviates aortic valve lesions in mice exposed to high fat diet or a proinflammatory stimulus, IL-37 has therapeutic potential for progressive calcific aortic valve disease.


Assuntos
Estenose da Valva Aórtica/prevenção & controle , Valva Aórtica/efeitos dos fármacos , Calcinose/prevenção & controle , Interleucinas/farmacologia , Osteogênese/efeitos dos fármacos , Idoso , Fosfatase Alcalina/metabolismo , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Calcinose/genética , Calcinose/metabolismo , Células Cultivadas , Feminino , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Proteínas Recombinantes/farmacologia
8.
Mol Med ; 25(1): 8, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30922225

RESUMO

BACKGROUND: 2-oxoglutarate (2OG), an intermediate metabolite in the tricarboxylic acid cycle, has been found to associate with chronic heart failure (HF), but its effect on short-term adverse outcomes in patients with acute HF (AHF) is uncertain. METHODS: This prospective cohort study included 411 consecutive hospitalized patients with AHF. During hospitalization, fasting plasma samples were collected within the first 24 h of admission. Plasma 2OG levels were measured by hydrophilic interaction liquid chromatography-liquid chromatography tandem mass spectrometry (HILIC-LC/MS/MS). All participants were followed up for six months. Multiple logistic regression was used to determine the odds ratio (OR) and 95% confidence interval (CI) for primary outcomes. RESULTS: The AHF cohort consisted of HF with preserved ejection fraction (EF) (64.7%), mid-range EF (16.1%), and reduced EF (19.2%), the mean age was 65 (±13) years, and 65.2% were male. Participants were divided into two groups based on median 2OG levels (µg/ml): low group (< 6.0, n = 205) and high group (≥6.0, n = 206). There was a relatively modest correlation between 2OG and N-terminal pro B-type natriuretic peptide (NT-proBNP) levels (r = 0.25; p < 0.001). After adjusting for age, sex, and body mass index, we found that the progression of the NYHA classification was associated with a gradual increase in plasma 2OG levels (p for trend< 0.001). After six months of follow-up, 76 (18.5%) events were identified. A high baseline 2OG level was positively associated with a short-term rehospitalization and all-cause mortality (OR: 2.2, 95% CI 1.3-3.7, p = 0.003), even after adjusting for NT-proBNP and estimated glomerular filtration rate (eGFR) (OR: 1.9, 95% CI 1.1-3.4, p = 0.032). After a similar multivariable adjustment, the OR was 1.4 (95% CI 1.1-1.7, p = 0.018) for a per-SD increase in 2OG level. CONCLUSIONS: High baseline 2OG levels are associated with adverse short-term outcomes in patients with AHF independent of NT-proBNP and eGFR. Hence plasma 2OG measurements may be helpful for risk stratification and treatment monitoring in AHF. TRIAL REGISTRATION: ChiCTR-ROC-17011240 . Registered 25 April 2017.


Assuntos
Insuficiência Cardíaca/sangue , Hospitalização/estatística & dados numéricos , Ácidos Cetoglutáricos/sangue , Doença Aguda , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
9.
Curr Atheroscler Rep ; 21(6): 22, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30997584

RESUMO

PURPOSE OF REVIEW: In the review, we briefly describe antithrombotic drugs and the use evidence from evidence-based medicine to elucidate the optimal antithrombotic management for patients with ST-segment elevation myocardial infarction (STEMI) undergoing percutaneous coronary stenting (PCI) at high risk of bleeding. RECENT FINDINGS: Mandatory use of intravenous anticoagulants and dual antiplatelet agents is the cornerstone strategy in acute and long-term antithrombotic management to optimize the clinical benefit of patients with STEMI undergoing PCI. Nevertheless, with the increasing occurrence of STEMI in old population with high risk of bleeding and renal insufficiency, as well as the specificity of high bleeding risk groups, the optimization of antithrombotic therapy still remains uncertain. Bivalirudin is the optimized intravenous anticoagulant agent for these patients based on the guideline recommendations and clinic data. Timely and potent ticagrelor and prasugrel with aspirin usage can increase the clinical benefit for the patients without increasing the clinical bleeding risk. At present, the multi-center, prospective clinical studies of EVOLVE short DAPT, MASTER DAPT, and POEM trials, targeting patients with high risk of bleeding, are in experimental stage. These clinical trials will provide more objective and optimal antithrombotic management strategy for the patients.


Assuntos
Anticoagulantes/uso terapêutico , Fibrinolíticos/uso terapêutico , Hemorragia/induzido quimicamente , Intervenção Coronária Percutânea , Inibidores da Agregação Plaquetária/uso terapêutico , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Stents , Anticoagulantes/administração & dosagem , Fibrinolíticos/administração & dosagem , Hirudinas/administração & dosagem , Humanos , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/uso terapêutico , Inibidores da Agregação Plaquetária/administração & dosagem , Cloridrato de Prasugrel/administração & dosagem , Cloridrato de Prasugrel/uso terapêutico , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico , Ticagrelor/administração & dosagem , Ticagrelor/uso terapêutico
10.
Med Sci Monit ; 24: 6989-7000, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30275441

RESUMO

BACKGROUND Cardiac rupture often occurs after acute myocardial infarction due to complex and unclear pathogenesis. This study investigated whether metformin increases the incidence of cardiac rupture after myocardial infarction through the AMPK-MTOR/PGC-1α signaling pathway. MATERIAL AND METHODS An acute myocardial infarction (MI) mouse model was established. A series of experiments involving RT-qPCR, Western blot, TUNEL staining, and Masson staining were performed in this study. RESULTS Myocardial infarction occurred, resulting in the cardiac rupture, and the expression level of PGC-1α increased in the cardiac myocardium. Meanwhile, the proportion of myocardial NT-PGC-1α/PGC-1α decreased. The expression level of myocardial PGC-1α in MI mice with cardiac rupture after MI was significantly higher than that in the mice without cardiac rupture, and the ratio of myocardial NT-PGC-1α/PGC-1α was low. In addition, increasing the dose of metformin significantly increased the incidence of cardiac rupture after myocardial infarction in MI mice. High-dose metformin caused cardiac rupture in MI mice. Moreover, high-dose metformin (Met 2.0 nM) reduces the proportion of NT-PGC-1α/PGC-1α in primary cardiomyocytes of SD mice (SD-NRVCs [Neonatal rat ventricular cardiomyocytes]), and its effect was inhibited by Compound C (AMPK inhibitor). Further, after 3 days of treatment with high-dose metformin in MI mice, myocardial fibrin synthesis decreased and fibrosis was significantly inhibited. Meanwhile, cardiomyocyte apoptosis increased significantly. With the increase in metformin concentration, the expression level of myocardial LC3b gradually increased in MI mice, suggesting that metformin enhances the autophagy of cardiomyocytes. CONCLUSIONS These results suggest that metformin increases cardiac rupture after myocardial infarction through the AMPK-MTOR/PGC-1α signaling pathway.


Assuntos
Ruptura Cardíaca Pós-Infarto/induzido quimicamente , Ruptura Cardíaca Pós-Infarto/metabolismo , Metformina/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Modelos Animais de Doenças , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossíntese , Serina-Treonina Quinases TOR/metabolismo
11.
Am J Physiol Cell Physiol ; 312(4): C407-C417, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052863

RESUMO

Calcific aortic valve disease is a chronic inflammatory condition, and the inflammatory responses of aortic valve interstitial cells (AVICs) play a critical role in the disease progression. Double-stranded RNA (dsRNA) released from damaged or stressed cells is proinflammatory and may contribute to the mechanism of chronic inflammation observed in diseased aortic valves. The objective of this study is to determine the effect of dsRNA on AVIC inflammatory responses and the underlying mechanism. AVICs from normal human aortic valves were stimulated with polyinosinic-polycytidylic acid [poly(I:C)], a mimic of dsRNA. Poly(I:C) increased the production of IL-6, IL-8, monocyte chemoattractant protein-1, and ICAM-1. Poly(I:C) also induced robust activation of ERK1/2 and NF-κB. Knockdown of Toll-like receptor 3 (TLR3) or Toll-IL-1 receptor domain-containing adapter-inducing IFN-ß (TRIF) suppressed ERK1/2 and NF-κB p65 phosphorylation and reduced inflammatory mediator production induced by poly(I:C). Inhibition of NF-κB, not ERK1/2, reduced inflammatory mediator production in AVICs exposed to poly(I:C). Interestingly, inhibition of NF-κB by prevention of p50 migration failed to suppress inflammatory mediator production. NF-κB p65 intranuclear translocation induced by the TLR4 agonist was reduced by inhibition of p50 migration; however, poly(I:C)-induced p65 translocation was not, although the p65/p50 heterodimer is present in AVICs. Poly(I:C) upregulates the production of multiple inflammatory mediators through the TLR3-TRIF-NF-κB pathway in human AVICs. The NF-κB activated by dsRNA appears not to be the canonical p65/p50 heterodimers.


Assuntos
Valva Aórtica/imunologia , Doenças das Valvas Cardíacas/imunologia , Mediadores da Inflamação/imunologia , NF-kappa B/imunologia , RNA de Cadeia Dupla/imunologia , Calcificação Vascular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Valva Aórtica/citologia , Linhagem Celular , Humanos , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/imunologia , Regulação para Cima/imunologia
12.
Mol Med ; 23: 83-91, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28362018

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is common among the elderly, and aortic valve interstitial cells (AVICs) exhibit unique inflammatory and osteogenic responses to pro-inflammatory stimulation which play an important role in valvular fibrosis and calcification. Thus, suppression of AVIC pro-inflammatory response may have therapeutic utility for prevention of CAVD progression. Interleukin (IL)-37, an anti-inflammatory cytokine, reduces tissue inflammation. OBJECTIVE: This study was to test the hypothesis that IL-37 suppresses human AVIC inflammatory responses to Toll-like receptor (TLR) agonists. METHODS AND RESULTS: Human AVICs were exposed to Pam3CSK4, poly(I:C) and lipopolysaccharide, respectively, in the presence and absence of recombinant human IL-37. Stimulation of TLR4 increased the production of intercellular adhesion molecule-1, IL-6, IL-8 and monocyte chemoattractant protein-1. Knockdown of myeloid differentiation factor 88 (MyD88) or TIR-domain-containing adaptor inducing interferon-ß (TRIF) differentially affected inflammatory mediator production following TLR4 stimulation. IL-37 reduced the production of these inflammatory mediators induced by TLR4. Moreover, knockdown of IL-37 enhanced the induction of these mediators by TLR4. IL-37 also suppressed inflammatory mediator production induced by the MyD88-dependent TLR2, but had no effect on the inflammatory responses to the TRIF-dependent TLR3. Furthermore, IL-37 inhibited NF-κB activation induced by TLR2 or TLR4 through a mechanism dependent of IL-18 receptor α-chain. CONCLUSION: Activation of TLR2, TLR3 or TLR4 up-regulates the production of inflammatory mediators in human AVICs. IL-37 suppresses MyD88-mediated responses to reduce inflammatory mediator production following stimulation of TLR2 and TLR4. This anti-inflammatory cytokine may be useful for suppression of aortic valve inflammation elicited by MyD88-dependent TLR signaling.


Assuntos
Anti-Inflamatórios/farmacologia , Valva Aórtica/citologia , Interleucina-1/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , Idoso , Células Cultivadas , Feminino , Humanos , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Poli I-C/farmacologia , Proteínas Recombinantes/farmacologia , Receptores Toll-Like/metabolismo
13.
Clin Chem Lab Med ; 55(1): 38-46, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27362960

RESUMO

BACKGROUND: The long noncoding RNAs (lncRNAs) have gradually been reported to be an important class of RNAs with pivotal roles in regulation of gene expression, and thus are involved in multitudinous human complex diseases. However, the biological functions and precise mechanisms of the majority of lncRNAs are still poorly understood. METHODS: In the study, we tested genomic variations in lncRNA-metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) loci, and their potentially functional correlationship with pulmonary arterial hypertension (PAH) susceptibility based on a case-control study with a total of 587 PAH patients and 736 healthy controls in southern Chinese. RESULTS: We found that the rs619586A>G single nucleotide polymorphism (SNP) was significantly associated with PAH risk. The carriers with G variant genotypes had a decreased risk of PAH (odds ratio [OR]=0.69, 95% confidence interval [CI]=0.53-0.90, p=0.007) compared to the rs619586AA genotype. Further functional experiments indicated that the alteration from rs619586A to G in MALAT1 could directly upregulate X box-binding protein 1 (XBP1) expression via functioning as the competing endogenous RNA (ceRNA) for miR-214, and consequentially inhibiting the vascular endothelial cells proliferation and migration in vitro by shortening S-M phase transition. CONCLUSIONS: Taken together, our findings propose that functional polymorphism rs619586A>G in MALAT1 gene plays an important role in PAH pathogenesis and may serve as a potential indicator for PAH susceptibility.


Assuntos
Povo Asiático/genética , Hipertensão Pulmonar/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética , Proliferação de Células , China , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Hipertensão Pulmonar/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/metabolismo
14.
BMC Cardiovasc Disord ; 17(1): 235, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28865437

RESUMO

BACKGROUND: Hemoconcentration has been proposed as surrogate for changes in volume status among patients hospitalized with acute heart failure (AHF) and is associated with a favorable outcome. However, there is a dearth of research assessing the clinical outcomes of hospitalized patients with hemoconcentration, hemodilution and unchanged volume status. METHODS: We enrolled 510 consecutive patients hospitalized for AHF from April 2011 to July 2015. Hematocrit (HCT) levels were measured at admission and either at discharge or on approximately the seventh day of admission. Patients were stratified by delta HCT tertitles into hemodilution (ΔHCT ≤ - 1.6%), no change (NC, -1.6% < ΔHCT ≤1.5%) and hemoconcentration (ΔHCT >1.5%) groups. The endpoint was all-cause death, with a median follow-up duration of 18.9 months. RESULTS: Hemoconcentration was associated with lower left ventricle ejection fraction, as compared with NC and hemodilution groups, while renal function at entry, New York Heart Association class IV, and in-hospital worsening renal function (WRF) were not significantly different across the three groups. After multivariable adjustment, hemoconcentration had a lower risk of mortality as compared with hemodilution [hazard ratio (HR) 0.39, 95% confidence interval (CI) 0.24-0.63, P < 0.001], or NC (HR 0.54, 95% CI 0.33-0.88, P = 0.015], while hemodilution and NC did not have significantly differ in mortality (HR 0.72, 95% CI 0.48-1.10, P = 0.130). CONCLUSIONS: In patients hospitalized with AHF, an increased HCT during hospitalization is associated with a lower risk of all-cause mortality than a decreased or unchanged HCT. Furthermore, all-cause mortality does not differ significantly between patients with unchanged and decreased HCT values.


Assuntos
Eritrócitos , Insuficiência Cardíaca/sangue , Hematócrito , Hospitalização , Doença Aguda , Idoso , Idoso de 80 Anos ou mais , Causas de Morte , Distribuição de Qui-Quadrado , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/mortalidade , Hemodiluição/métodos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Admissão do Paciente , Alta do Paciente , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo
15.
Biochim Biophys Acta ; 1843(11): 2744-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25101972

RESUMO

Calcific aortic valve disease (CAVD) is a chronic inflammatory condition and affects a large number of elderly people. Aortic valve interstitial cells (AVICs) occupy an important role in valvular calcification and CAVD progression. While pro-inflammatory mechanisms are capable of inducing the osteogenic responses in AVICs, the molecular interaction between pro-inflammatory and pro-osteogenic mechanisms remains poorly understood. This study tested the hypothesis that intercellular adhesion molecule-1 (ICAM-1) plays a role in mediating pro-osteogenic factor expression in human AVICs. AVICs were isolated from normal human aortic valves and cultured in M199 medium. Treatment with leukocyte function-associated factor-1 (LFA-1, an ICAM-1 ligand) up-regulated the expression of bone morphogenetic protein-2 (BMP-2) and resulted in increased alkaline phosphatase activity and formation of calcification nodules. Pre-treatment with lipopolysaccharide (LPS, 0.05µg/ml) increased ICAM-1 levels on cell surfaces and exaggerated the pro-osteogenic response to LFA-1, and neutralization of ICAM-1 suppressed this response. Further, ligation of ICAM-1 by antibody cross-linking also up-regulated BMP-2 expression. Interestingly, LFA-1 elicited Notch1 cleavage and NF-κB activation. Inhibition of NF-κB markedly reduced LFA-1-induced BMP-2 expression, and inhibition of Notch1 cleavage with a γ-secretase inhibitor suppressed LFA-1-induced NF-κB activation and BMP-2 expression. Ligation of ICAM-1 on human AVICs activates the Notch1 pathway. Notch1 up-regulates BMP-2 expression in human AVICs through activation of NF-κB. The results demonstrate a novel role of ICAM-1 in translating a pro-inflammatory signal into a pro-osteogenic response in human AVICs and suggest that ICAM-1 on the surfaces of AVICs contributes to the mechanism of aortic valve calcification.

16.
Mol Med ; 20: 280-9, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24918749

RESUMO

The myocardial inflammatory response contributes to cardiac functional injury associated with heart surgery obligating global ischemia/reperfusion (I/R). Toll-like receptors (TLRs) play an important role in the mechanism underlying myocardial I/R injury. The aim of this study was to examine the release of small constitutive heat shock proteins (HSPs) from human and mouse myocardium after global ischemia and examine the role of extracellular small HSP in myocardial injury. HSP27 release was assessed by enzyme-linked immunosorbent assay. Anti-HSP27 was applied to evaluate the role of extracellular HSP27 in the postischemic inflammatory response and functional injury in mouse hearts. Isolated hearts and cultured coronary vascular endothelial cells were exposed to recombinant HSP27 to determine its effect on proinflammatory signaling and production of proinflammatory mediators. HSP27 levels were markedly elevated in coronary sinus blood of patients and in coronary effluent of mouse hearts after global ischemia. Neutralizing extracellular HSP27 suppressed myocardial nuclear factor (NF)-κB activation and interleukin (IL)-6 production and improved cardiac function in mouse hearts. Perfusion of HSP27 to mouse hearts induced NF-κB activation and IL-6 production and depressed contractility. Further, recombinant HSP27 induced NF-κB phosphorylation and upregulated monocyte chemoattractant protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1 production in both human and mouse coronary vascular endothelial cells. TLR2 knockout (KO) or TLR4 mutation abolished NF-κB phosphorylation and reduced MCP-1 and ICAM-1 production induced by extracellular HSP27 in endothelial cells. In conclusion, these results show that the myocardium releases HSP27 after global ischemia and that extracellular HSP27 is proinflammatory and contributes to the inflammatory mechanism of myocardial functional injury. Both TLR2 and TLR4 are involved in mediating the proinflammatory effect of extracellular HSP27.


Assuntos
Proteínas de Choque Térmico HSP27/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Células Endoteliais , Proteínas de Choque Térmico , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares , NF-kappa B/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 33(7): 1580-90, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640488

RESUMO

OBJECTIVE: Calcific aortic valve disease is a leading cardiovascular disease in the elderly, and progressive calcification results in the failure of valvular function. Aortic valve interstitial cells (AVICs) from stenotic valves express higher levels of bone morphogenetic protein-2 in response to Toll-like receptor 4 stimulation. We recently found that Toll-like receptor 4 interacts with Notch1 in human AVICs. This study tests the hypothesis that Notch1 promotes the pro-osteogenic response of human AVICs. APPROACH AND RESULTS: AVICs isolated from diseased human valves expressed higher levels of bone morphogenetic protein-2 and alkaline phosphatase after lipopolysaccharide stimulation. The augmented pro-osteogenic response is associated with elevated cellular levels of Notch1 and enhanced Notch1 cleavage in response to lipopolysaccharide stimulation. Inhibition or silencing of Notch1 suppressed the pro-osteogenic response in diseased cells, and the Notch 1 ligand, Jagged1, enhanced the response in AVICs isolated from normal human valves. Interestingly, extracellular signal-regulated protein kinases 1/2 (ERK1/2) and nuclear factor-κB phosphorylation induced by lipopolysaccharide was markedly reduced by inhibition or silencing of Notch1 and enhanced by Jagged1. Inhibition of ERK1/2 or nuclear factor-κB also reduced bone morphogenetic protein-2 and alkaline phosphatase expression induced by lipopolysaccharide. CONCLUSIONS: Notch1 mediates the pro-osteogenic response to Toll-like receptor 4 stimulation in human AVICs. Elevated Notch1 levels and enhanced Notch1 activation play a major role in augmentation of the pro-osteogenic response of AVICs of stenotic valves through modulation of ERK1/2 and nuclear factor-κB activation. These pathways could be potential therapeutic targets for prevention of the progression of calcific aortic valve disease.


Assuntos
Estenose da Valva Aórtica/enzimologia , Valva Aórtica/enzimologia , Calcinose/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteogênese , Receptor Notch1/metabolismo , Idoso , Fosfatase Alcalina/metabolismo , Valva Aórtica/efeitos dos fármacos , Valva Aórtica/patologia , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Proteína Morfogenética Óssea 2/metabolismo , Calcinose/genética , Calcinose/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Lipopolissacarídeos/farmacologia , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Osteogênese/efeitos dos fármacos , Fosforilação , Interferência de RNA , Receptor Notch1/genética , Proteínas Serrate-Jagged , Transdução de Sinais , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo , Transfecção , Regulação para Cima
18.
Crit Care ; 18(5): 527, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25209241

RESUMO

INTRODUCTION: Endotoxemia and the systemic inflammatory response syndrome have a significant impact on post-surgery outcome, particularly in the elderly. The cytokine response to endotoxin is altered by aging. We tested the hypothesis that vulnerability to endotoxemic cardiac depression increases with aging due to age-related augmentation of myocardial inflammatory responses. METHODS: Adult (4 to 6 months) and old (20 to 22 months) C57/BL6 mice were treated with endotoxin (0.5 mg/kg, iv). Left ventricle (LV) function was assessed using a microcatheter system. Chemokines and cytokines in plasma and myocardium were analyzed by enzyme-linked immunosorbent assay (ELISA). Mononuclear cells in the myocardium were examined using immunofluorescence staining. RESULTS: Old mice displayed worse LV function (cardiac output: 3.0 ± 0.2 mL/min versus 4.4 ± 0.3 mL/min in adult mice) following endotoxin treatment. The exaggerated cardiac depression in old mice was associated with higher levels of monocyte chemoattractant protein-1 (MCP-1) and keratinocyte chemoattractant (KC) in plasma and myocardium, greater myocardial accumulation of mononuclear cells, and greater levels of tumor necrosis factor-α (TNF-α), interleukin 1ß (IL-1ß) and interleukin 6 (IL-6) in plasma and myocardium. Neutralization of MCP-1 resulted in greater reductions in myocardial mononuclear cell accumulation and cytokine production, and greater improvement in LV function in old mice while neutralization of KC had a minimal effect on LV function. CONCLUSION: Old mice have enhanced inflammatory responses to endotoxemia that lead to exaggerated cardiac functional depression. MCP-1 promotes myocardial mononuclear cell accumulation and cardiodepressant cytokines production, and plays an important role in the endotoxemic cardiomyopathy in old mice. The findings suggest that special attention is needed to protect the heart in the elderly with endotoxemia.


Assuntos
Quimiocina CCL2/biossíntese , Endotoxemia/metabolismo , Miocárdio/metabolismo , Envelhecimento/fisiologia , Animais , Biomarcadores/sangue , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/sangue , Quimiocina CCL2/imunologia , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Camundongos , Camundongos Endogâmicos C57BL , Disfunção Ventricular Esquerda
19.
Exp Mol Med ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945954

RESUMO

Calcific aortic valve disease (CAVD) is becoming an increasingly important global medical problem, but effective pharmacological treatments are lacking. Noncoding RNAs play a pivotal role in the progression of cardiovascular diseases, but their relationship with CAVD remains unclear. Sequencing data revealed differential expression of many noncoding RNAs in normal and calcified aortic valves, with significant differences in circHIPK3 and miR-182-5p expression. Overexpression of circHIPK3 ameliorated aortic valve lesions in a CAVD mouse model. In vitro experiments demonstrated that circHIPK3 inhibits the osteogenic response of aortic valve interstitial cells. Mechanistically, DEAD-box helicase 5 (DDX5) recruits methyltransferase 3 (METTL3) to promote the N6-methyladenosine (m6A) modification of circHIPK3. Furthermore, m6A-modified circHIPK3 increases the stability of Kremen1 (Krm1) mRNA, and Krm1 is a negative regulator of the Wnt/ß-catenin pathway. Additionally, miR-182-5p suppresses the expression of Dickkopf2 (Dkk2), the ligand of Krm1, and attenuates the Krm1-mediated inhibition of Wnt signaling. Activation of the Wnt signaling pathway significantly contributes to the promotion of aortic valve calcification. Our study describes the role of the Krm1-Dkk2 axis in inhibiting Wnt signaling in aortic valves and suggests that noncoding RNAs are upstream regulators of this process.

20.
Circulation ; 126(11 Suppl 1): S222-30, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22965987

RESUMO

BACKGROUND AND PURPOSE: Calcific aortic stenosis is a chronic inflammatory disease, and aortic valve interstitial cells (AVIC) play an important role in valvular inflammation. Whereas AVIC from stenotic aortic valves exhibit an augmented response to Toll-like receptor 4 (TLR4) stimulation, the underlying mechanism is unclear. This study tested the hypothesis that an excessive cross-talk between the TLR4 and Notch1 pathways is responsible for augmentation of the inflammatory response to lipopolysaccharide (LPS) in AVIC of stenotic valves. METHODS AND RESULTS: Human AVIC were isolated from normal and stenotic leaflets. Nuclear factor kappa-B (NF-κB) activation and production of interleukin-8, monocyte chemoattactrant protein-1, and intercellular adhesion molecule-1 were analyzed after treatment with LPS. The role of Notch1 in the inflammatory response was determined using inhibitor, siRNA, and specific ligand. Cells from diseased valves produced greater levels of chemokines and intercellular adhesion molecule-1 that are associated with enhanced NF-κB activation. Interestingly, diseased cells exhibited augmented Jagged1 release and Notch1 activation after TLR4 stimulation. Inhibition and silencing of Notch1 each resulted in greater suppression of the TLR4-induced inflammatory response in diseased cells. Conversely, activation of Notch1 with a specific ligand, Jagged1, enhanced the LPS-induced inflammatory response in normal AVIC. Further, Notch1 intracellular domain was coimmunoprecipited with the inhibitor of NF-κB kinase after LPS stimulation, and inhibition of Notch1 abrogated the difference in the level of NF-κB activation between diseased and normal cells. CONCLUSION: Notch1 enhances the inflammatory response to TLR4 stimulation in human AVIC through modulating NF-κB activation. Excessive cross-talk between the TLR4 and Notch1 pathways is responsible for augmentation of the TLR4 response in AVIC of stenotic valves.


Assuntos
Estenose da Valva Aórtica/patologia , NF-kappa B/fisiologia , Receptor Notch1/fisiologia , Receptor 4 Toll-Like/fisiologia , Idoso , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Estenose da Valva Aórtica/metabolismo , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Células Cultivadas/metabolismo , Células Cultivadas/patologia , Citocinas/biossíntese , Citocinas/genética , Dipeptídeos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteína Jagged-1 , Lipopolissacarídeos/farmacologia , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Pessoa de Meia-Idade , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Serrate-Jagged , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA