Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Sci ; 43(4): 2823-2830, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34373992

RESUMO

PURPOSE: Alcohol-induced osteonecrosis femoral head necrosis (ONFH) is a disease that seriously affects human health. Abnormal expression of L3MBTL3/PTPN9 gene can cause a variety of human diseases. The purpose of this study is to investigate the effect of L3MBTL3/PTPN9 gene polymorphism on the susceptibility of alcohol-induced ONFH in Chinese Han population. METHODS: A total of 308 alcohol-induced ONFH patients and 425 healthy controls were enrolled in this case-control study. Alleles, genotypes, genetic models, haplotypes, and multifactor dimensionality reduction analyses (MDR) based on age-corrected by using odds ratio (OR) and 95% confidence interval (CI) were performed. RESULTS: Our result revealed rs2068957 in the L3MBTL3 gene increased the risk of alcohol ONFH under the recessive model after correction. Besides, we also found that rs75393192 in the PTPN9 gene was a protective site in stratification over 40 years of age and stage. In stratified analysis of necrotic sites, we only found that rs2068957 was associated with increased susceptibility of alcohol-induced ONFH under the co-dominant model and recessive model. Haplotype "GC" in the block (rs76107647|rs10851882 in PTPN9 gene) significantly decreased the susceptibility of alcoholic ONFH. CONCLUSIONS: Our results provide evidence that L3MBTL3/PTPN9 polymorphisms are associated with alcohol-induced ONFH risk in Chinese Han population.


Assuntos
Povo Asiático , Etnicidade , Necrose da Cabeça do Fêmur , Predisposição Genética para Doença , Polimorfismo Genético , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China , Etnicidade/genética , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/epidemiologia , Necrose da Cabeça do Fêmur/genética , Predisposição Genética para Doença/genética , Haplótipos , Humanos , Pessoa de Meia-Idade , Polimorfismo Genético/genética
2.
J Cell Biochem ; 121(1): 49-62, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571264

RESUMO

Acute coronary syndrome (ACS) is characterized by atherosclerotic plaque rupture with a high incidence of recurrent ischemic events. Several microRNAs are found to be aberrantly expressed in atherosclerotic plaques. This study aims to investigate the effects of microRNA-9 (miR-9) on vulnerable atherosclerotic plaque and vascular remodeling in ACS and underlying mechanisms. Microarray-based gene expression profiling was used to identify differentially expressed genes related to ACS and regulatory miRNAs. Oxidized low-density lipoprotein (lectin-like) receptor 1 (OLR1) was identified to be aberrantly activated in ACS and regulated by miR-9. OLR1 was verified as a target gene of miR-9 by bioinformatics prediction and dual luciferase reporter gene assay. The atherosclerotic models were induced in ApoE-/- mice, in which the agomir or antagomir of miR-9, or small interfering RNA (siRNA) against OLR1 were separately introduced. Serum lipid levels and expression of vascular remodeling and inflammatory response-related factors were determined, respectively. On the basis of the obtained results, in the atherosclerosis mice treated with the agomir of miR-9 and siRNA against OLR1, the p38-mitogen-activated protein kinase (p38MAPK) pathway was inhibited; levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol, tumor necrosis factor-α, interleukin-6, and vascular endothelial growth factor were reduced, but the high-density lipoprotein cholesterol level was increased, along with decreased vulnerable atherosclerotic plaque area and enhanced vascular remodeling. Taken together, these findings suggested an inhibitory role miR-9 acts in the formation of vulnerable atherosclerotic plaques in ACS mice, along with a promoted vascular remodeling, via a negative feedback regulation of OLR1-mediated p38MAPK pathway.


Assuntos
Síndrome Coronariana Aguda/metabolismo , MicroRNAs/metabolismo , Placa Aterosclerótica/metabolismo , Receptores Depuradores Classe E/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Aorta/metabolismo , Aterosclerose/metabolismo , HDL-Colesterol/metabolismo , Modelos Animais de Doenças , Feminino , Lipídeos/sangue , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/metabolismo , Regulação para Cima , Remodelação Vascular
3.
Acta Pharmacol Sin ; 41(2): 229-236, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31431733

RESUMO

In chronic infectious diseases caused by gram-negative bacteria, such as osteomyelitis, septic arthritis, and periodontitis, osteoclastic activity is enhanced with elevated inflammation, which disturbs the bone homeostasis and results in osteolysis. Lipopolysaccharide (LPS), as a bacteria product, plays an important role in this process. Recent evidence shows that an antimalarial drug artesunate attenuates LPS-induced osteolysis independent of RANKL. In this study we evaluated the effects of artesunate on LPS-induced osteoclastogenesis in vitro and femur osteolysis in vivo, and explored the mechanisms underlying the effects of artesunate on LPS-induced osteoclast differentiation independent of RANKL. In preosteoclastic RAW264.7 cells, we found that artesunate (1.56-12.5 µM) dose dependently inhibited LPS-induced osteoclast formation accompanied by suppressing LPS-stimulated osteoclast-related gene expression (Fra-2, TRAP, Cathepsin K, ß3-integrin, DC-STAMP, and Atp6v0d2). We showed that artesunate (3.125-12.5 µM) inhibited LPS-stimulated nuclear factor of activated T cells c1 (NFATc1) but not NF-κB transcriptional activity; artesunate (6.25, 12.5 µM) significantly inhibited LPS-stimulated NFATc1 protein expression. Furthermore, artesunate treatment markedly suppressed LPS-induced Ca2+ influx, and decreased the expression of PP2B-Aα (calcineurin) and pPLCγ1 in the cells. In addition, artesunate treatment significantly decreased the expression of upstream signals TLR4 and TRAF6 during LPS-induced osteoclastogenesis. Administration of artesunate (10 mg/kg, ip) for 8 days effectively inhibited serum TNF-α levels and ameliorated LPS (5 mg/kg, ip)-induced inflammatory bone loss in vivo. Taken together, artesunate attenuates LPS-induced inflammatory osteoclastogenesis by inhibiting the expression of TLR4/TRAF6 and the downstream PLCγ1-Ca2+-NFATc1 signaling pathway. Artesunate is a valuable choice to treat bone loss induced by gram-negative bacteria infection or inflammation in RANKL-independent pathway.


Assuntos
Antimaláricos/farmacologia , Artesunato/farmacologia , Inflamação/tratamento farmacológico , Osteoclastos/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Artesunato/administração & dosagem , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Feminino , Inflamação/patologia , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos ICR , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Fosfolipase C gama/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo
4.
Acta Pharmacol Sin ; 37(2): 255-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26592521

RESUMO

AIM: Aconiti Lateralis Radix Preparata is a traditional Chinese medicine used to treat chronic arthritis and is highly effective against rheumatoid arthritis. However, the effects of aconine, a derivative of aconitum alkaloids, on osteoclasts, which can absorb bone, remain unknown. Here, we investigated the effects of aconine on osteoclast differentiation and bone resorption in vitro. METHODS: The viability of mouse leukemic monocyte/macrophage cell line RAW264.7 was measured using CCK-8 assays. Osteoclast differentiation was induced by incubation of RAW264.7 cells in the presence of RANKL, and assessed with TRAP staining assay. Bone resorption was examined with bone resorption pits assay. The expression of relevant genes and proteins was analyzed using RT-PCR and Western blots. The activation of NF-κB and nuclear factor of activated T-cells (NFAT) was examined using stable NF-κB and NFATc1 luciferase reporter gene systems, RT-PCR and Western blot analysis. RESULTS: Aconine (0.125, 0.25 µmol/L) did not affect the viability of RAW264.7 cells, but dose-dependently inhibited RANKL-induced osteoclast formation and bone resorptive activity. Furthermore, aconine dose-dependently inhibited the RANKL-induced activation of NF-κB and NFATc1 in RAW264.7 cells, and subsequently reduced the expression of osteoclast-specific genes (c-Src, ß3-Integrin, cathepsin K and MMP-9) and the expression of dendritic cell-specific transmembrane protein (DC-STAMP), which played an important role in cell-cell fusion. CONCLUSION: These findings suggest that aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing the activation of NF-κB and NFATc1 and the expression of the cell-cell fusion molecule DC-STAMP.


Assuntos
Aconitina/análogos & derivados , Adjuvantes Imunológicos/farmacologia , Proteínas de Membrana/genética , NF-kappa B/imunologia , Fatores de Transcrição NFATC/imunologia , Proteínas do Tecido Nervoso/genética , Osteoclastos/efeitos dos fármacos , Ligante RANK/imunologia , Aconitina/farmacologia , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Reabsorção Óssea/imunologia , Diferenciação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Camundongos , Osteoclastos/citologia , Osteoclastos/imunologia , Osteoclastos/metabolismo , Células RAW 264.7
5.
Acta Pharmacol Sin ; 35(2): 203-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362325

RESUMO

AIM: Sinomenine (SIN) is an alkaloid found in the roots and stems of Sinomenium acutum, which has been used to treat rheumatic arthritis in China and Japan. In this study we investigated the effects of SIN on osteoclast survival in vitro and the mechanisms of the actions. METHODS: Mature osteoclasts were differentiated from murine monocyte/macrophage cell line RAW264.7 through incubation in the presence of receptor activator of NF-κB ligand (RANKL, 100 ng/mL) for 4 d. The cell viability was detected using the CCK-8 method. The survival and actin ring construction of the osteoclasts were scored using TRACP staining and phalloidin-FITC staining, respectively. The apoptosis of the osteoclasts was detected by DNA fragmentation and Hoechst 33258 staining, and the cell necrosis was indicated by LDH activity. The activation of caspase-3 in osteoclasts was measured using Western blotting and the caspase-3 activity colorimetric method. RESULTS: SIN (0.25-2 mmol/L) inhibited the viability of mature osteoclasts in dose-dependent and time-dependent manners, but did not affect that of RAW264.7 cells. Consistently, SIN dose-dependently suppressed the survival of mature osteoclasts. The formation of actin ring, a marker associated with actively resorbing osteoclasts, was also impaired by the alkaloid. SIN (0.5 mmol/L) induced the apoptosis of mature osteoclasts, which was significantly attenuated in the presence of the caspase-3 inhibitor Ac-DEVD-CHO. SIN increased the cleavage of caspase-3 in mature osteoclasts in dose-dependent and time-dependent manners. Furthermore, SIN dose-dependently enhanced caspase-3 activity, which was blocked in the presence of Ac-DEVD-CHO. CONCLUSION: Sinomenine inhibits osteoclast survival in vitro through caspase-3-mediated apoptosis, thus it is a potential agent for treating excessive bone resorption diseases.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Morfinanos/farmacologia , Osteoclastos/efeitos dos fármacos , Animais , Linhagem Celular , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Osteoclastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA