Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792181

RESUMO

This study investigates the utilisation of organometallic network frameworks composed of fourth-period transition metals and tetrahydroxyquinone (THQ) in electrocatalytic CO2 reduction. Density functional theory (DFT) calculations were employed in analysing binding energies, as well as the stabilities of metal atoms within the THQ frameworks, for transition metal TM-THQs ranging from Y to Cd. The findings demonstrate how metal atoms could be effectively dispersed and held within the THQ frameworks due to sufficiently high binding energies. Most TM-THQ frameworks exhibited favourable selectivity towards CO2 reduction, except for Tc and Ru, which experienced competition from hydrogen evolution reaction (HER) and required solution environments with pH values greater than 5.716 and 8.819, respectively, to exhibit CO2RR selectivity. Notably, the primary product of Y, Ag, and Cd was HCOOH; Mo produced HCHO; Pd yielded CO; and Zr, Nb, Tc, Ru, and Rh predominantly generated CH4. Among the studied frameworks, Zr-THQ displayed values of 1.212 V and 1.043 V, corresponding to the highest limiting potential and overpotential, respectively, while other metal-organic frameworks displayed relatively low ranges of overpotentials from 0.179 V to 0.949 V. Consequently, it is predicted that the TM-THQ framework constructed using a fourth-period transition metal and tetrahydroxyquinone exhibits robust electrocatalytic reduction of CO2 catalytic activity.

2.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930961

RESUMO

Metal-organic frameworks have demonstrated great capacity in catalytic CO2 reduction due to their versatile pore structures, diverse active sites, and functionalization capabilities. In this study, a novel electrocatalytic framework for CO2 reduction was designed and implemented using 2D coordination network-type transition metal-hexahydroxytricyclic quinazoline (TM-HHTQ) materials. Density functional theory calculations were carried out to examine the binding energies between the HHTQ substrate and 10 single TM atoms, ranging from Sc to Zn, which revealed a stable distribution of metal atoms on the HHTQ substrate. The majority of the catalysts exhibited high selectivity for CO2 reduction, except for the Mn-HHTQ catalysts, which only exhibited selectivity at pH values above 4.183. Specifically, Ti and Cr primarily produced HCOOH, with corresponding 0.606 V and 0.236 V overpotentials. Vanadium produced CH4 as the main product with an overpotential of 0.675 V, while Fe formed HCHO with an overpotential of 0.342 V. Therefore, V, Cr, Fe, and Ti exhibit promising potential as electrocatalysts for carbon dioxide reduction due to their favorable product selectivity and low overpotential. Cu mainly produces CH3OH as the primary product, with an overpotential of 0.96 V. Zn primarily produces CO with a relatively high overpotential of 1.046 V. In contrast, catalysts such as Sc, Mn, Ni, and Co, among others, produce multiple products simultaneously at the same rate-limiting step and potential threshold.

3.
Small ; 19(37): e2300926, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37150851

RESUMO

Metal single-atom and internal structural defects typically coexist in M-N-C materials obtained through the existing basic pyrolysis processes. Identifying a correlation between them to understand the structure-activity relationship and achieve efficient catalytic performance is important, particularly for the rare-earth (RE) elements with rich electron orbitals and strong coordination capabilities. Herein, a novel single-atom catalyst based on the RE element lutetium is successfully synthesized on a N-C support. Structural and simulation analyses demonstrate that the formation of a LuN6 structural site with an individual defect because of pyrolysis is thermodynamically favorable in Lu-N-C. Using KHCO3 -based electrolytes facilitates the fall of the K+ cations into the defective sites of Lu-N-C, thus enabling improved CO2 capture and activation, which increases the catalyst conductivity for Lu-N-C. In this study, the catalyst exhibits a Faradaic efficiency of 95.1% for CO at a current density of 18.2 mA cm-2 during carbon dioxide reduction reaction. This study thus provides new insights into understanding RE-N-C materials for energy utilization.

4.
Chemistry ; 29(64): e202302232, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37583085

RESUMO

Transition metals and organic ligands combine to form metal-organic frameworks (MOFs), which possess distinct active sites, large specific surface areas and stable porous structures, giving them considerable promise for CO2 reduction electrocatalysis. In the present study, using spin polarisation density-functional theory, a series of 2D MOFs constructed from 3d transition metal and hexamethylene dipyrazoline quinoxaline(HADQ) were investigated. The calculated binding energies between HADQ and metal atoms for the ten TM-HADQ monolayers were strong sufficient to stably disperse the metal atoms in the HADQ monolayers. Of the ten catalysts tested, seven (Sc, Ni, Cu, Zn, Ti, V and Cr) exhibited high CO2 reduction selectivity, while Mn, Fe and Co required pH values above 2.350, 6.461 and 6.363, respectively, to exhibit CO2 reduction selectivity. HCOOH was the most important producer for Sc, Zn, Ni and Mn, while CH4 was the main producer for Ti, Cr, Fe and V. Cu and Co were less selective, producing HCHO, CH3 OH, and CH4 simultaneously at the same rate-determining step and limiting potential. The Cu-HADQ catalyst had a high overpotential for the HCHO product (1.022 V), while the other catalysts had lower overpotentials between 0.016 V and 0.792 V. Thus, these results predict TM-HADQ to show excellent activity in CO2 electrocatalytic reduction and to become a promising electrocatalyst for CO2 reduction.

5.
Phys Chem Chem Phys ; 25(30): 20381-20394, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37465923

RESUMO

Single-atom catalysts fabricated using rare earth elements have emerged for electrocatalytic carbon dioxide reduction, but they need to be studied systematically and intensively. Herein, density functional theory was employed to determine the electrocatalytic CO2 reduction activity of rare earth-N6 porous carbon (Re = Ce, Nd, Sm, Eu, Gd, Tb, Er, Tm, Yb, and Lu) single-atom catalysts. The results revealed that the binding energy of the rare-earth atoms to the N6C monolayers in the ten studied Re-N6C monatomic catalysts is much more negative than the cohesion energy of the bulk rare-earth metal, which makes rare-earth atoms stably dispersed in the N6C skeleton. CO is the primary chemical product of electrocatalytic CO2 reduction by Ce, Eu, and Lu. The primary product of the six monatomic species, i.e., Nd, Sm, Tb, Er, Tm, and Yb, is HCOOH. The dominant product of Gd is CH4. The limiting potentials of these catalysts are in the range of 0.31-0.786 V and their overpotentials are in the range of 0.06-0.707 V, all of which are relatively low, showing that they are potential and promising electrocatalysts for CO2 reduction. Subsequently, Eu-N6C was experimentally synthesized and used for electrocatalytic CO2 reduction to obtain CO products, and the overpotential showed good agreement with the theoretically calculated values.

6.
Nanomaterials (Basel) ; 12(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36432292

RESUMO

Electrocatalytic reduction of CO2 to valuable fuels and chemicals can not only alleviate the energy crisis but also improve the atmospheric environment. The key is to develop electrocatalysts that are extremely stable, efficient, selective, and reasonably priced. In this study, spin-polarized density function theory (DFT) calculations were used to comprehensively examine the catalytic efficacy of transition metal-hexaaminobenzene (TM-HAB) monolayers as single-atom catalysts for the electroreduction of CO2. In the modified two-dimensional TM-HAB monolayer, our findings demonstrate that the binding of individual metal atoms to HAB can be strong enough for the atoms to be evenly disseminated and immobilized. In light of the conflicting hydrogen evolution processes, TM-HAB effectively inhibits hydrogen evolution. CH4 dominates the reduction byproducts of Sc, Ti, V, Cr, and Cu. HCOOH makes up the majority of Zn's reduction products. Co's primary reduction products are CH3OH and CH4, whereas Mn and Fe's primary reduction products are HCHO, CH3OH, and CH4. Among these, the Ti-HAB reduction products have a 1.14 eV limiting potential and a 1.31 V overpotential. The other monolayers have relatively low overpotentials between 0.01 V and 0.7 V; therefore, we predict that TM-HAB monolayers will exhibit strong catalytic activity in the electrocatalytic reduction of CO2, making them promising electrocatalysts for CO2 reduction.

7.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432332

RESUMO

The resource utilization of CO2 is one of the essential avenues to realize the goal of "double carbon". The metal-organic framework (MOF) has shown promising applications in CO2 catalytic reduction reactions due to its sufficient pore structure, abundant active sites and functionalizability. In this paper, we investigated the electrocatalytic carbon dioxide reduction reactions of single-atom catalysts created by MOF two-dimensional coordination network materials constructed from transition metal-tetrahydroxybenzoquinone using density function theory calculations. The results indicate that for 10 transition metals, TM-THQ single levels ranging from Sc to Zn, the metal atom binding energy to the THQ is large enough to allow the metal atoms to be stably dispersed in the THQ monolayer. The Ni-THQ catalyst does not compete with the HER reaction in an electrocatalytic CO2 reduction. The primary product of reduction for Sc-THQ is HCOOH, but the major product of Co-THQ is HCHO. The main product of Cu-THQ is CO, while the main product of six catalysts, Ti, V, Cr, Mn, Fe, and Zn, is CH4. The limit potential and overpotential of Ti-THQ are the highest, 1.043 V and 1.212 V, respectively. The overpotentials of the other monolayer catalysts ranged from 0.172 to 0.952 V, and they were all relatively low. Therefore, we forecast that the TM-HQ monolayer will show powerful activity in electrocatalytic carbon dioxide reduction, making it a prospective electrocatalyst for carbon dioxide reduction.

8.
Materials (Basel) ; 15(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744295

RESUMO

The formations of long-period superstructures strongly influence the properties of Al-rich L10-TiAl intermetallic alloys. To soundly understand the role of the superstructures in the alloys, fundamentals about them have to be known. In the present work, the structural, elastic, electronic and thermodynamic properties of h- and r-Al2Ti long-period superstructures under pressure up to 30 GPa were systematically investigated using first-principles calculations based on density functional theory. The pressure dependence of structural parameters, single-crystal elastic constants, polycrystalline elastic modulus, Cauchy pressures and elastic anisotropy were successfully calculated and discussed. The total and partial densities of states at different pressures were also successfully calculated and discussed. Furthermore, combining with quasi-harmonic approximation, the effects of the pressure on the temperature dependent volume, isothermal bulk modulus, thermal expansion coefficient, heat capacity and Gibbs free energy difference were successfully obtained and discussed. Our results were consistent with the available experimental and theoretical values.

9.
Materials (Basel) ; 11(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340382

RESUMO

The effect of pressure on the structural property and anisotropic elasticity of γ 1 -Ti 4 Nb 3 Al 9 phase has been investigated in this paper by using first-principles calculations. The obtained bulk properties at zero pressure are in good agreement with the previous data. The structural property and elastic constants under pressures up to 40 GPa have been obtained. According to the elastic stability conditions under isotropic pressure, the phase is found to be mechanically stable under pressures up to 37.3 GPa. From the obtained elastic constants, the elastic moduli, anisotropic factors and acoustic velocities under different pressures have also been obtained successfully together with minimum thermal conductivities and Debye temperature. It is shown that the ductility of the phase is improved and its anisotropy and Debye temperature are enhanced with increasing the pressure.

10.
Materials (Basel) ; 11(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336643

RESUMO

Using first-principles calculations based on density functional theory, the elastic constants and some of the related physical quantities, such as the bulk, shear, and Young's moduli, Poisson's ratio, anisotropic factor, acoustic velocity, minimum thermal conductivity, and Debye temperature, are reported in this paper for the hexagonal intermetallic compound Ti 3 Al. The obtained results are well consistent with the available experimental and theoretical data. The effect of pressure on all studied parameters was investigated. By the mechanical stability criteria under isotropic pressure, it is predicted that the compound is mechanically unstable at pressures above 71.4 GPa. Its ductility, anisotropy, and Debye temperature are enhanced with pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA