Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ultrasound Med ; 43(7): 1265-1277, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558301

RESUMO

OBJECTIVE: To evaluate corpus callosum (CC) size in fetuses with malformations of cortical development (MCD) and to explore the diagnostic value of three CC length (CCL) ratios in identifying cortical abnormalities. METHODS: This is a single-center retrospective study in singleton fetuses at 20-37 weeks of gestation between April 2017 and August 2022. The midsagittal plane of the fetal brain was obtained and evaluated for the following variables: length, height, area of the corpus callosum, and relevant markers, including the ratios of corpus callosum length to internal cranial occipitofrontal dimension (CCL/ICOFD), corpus callosum length to femur length (CCL/FL), and corpus callosum length to cerebellar vermian diameter (CCL/VD). Intra-class correlation coefficient (ICC) was used to evaluate measurement consistency. The accuracy of biometric measurements in prediction of MCD was assessed using the area under the receiver-operating-characteristics curves (AUC). RESULTS: Fetuses with MCD had a significantly decreased CCL, height (genu and splenium), and area as compared with those of normal fetuses (P < .05), but there was no significant difference in body height (P = .326). The CCL/ICOFD, CCL/FL, and CCL/VD ratios were significantly decreased in fetuses with MCD when compared with controls (P < .05). The CCL/ICOFD ratio offered the highest predictive accuracy for MCD, yielding an AUC of 0.856 (95% CI: 0.774-0.938, P < .001), followed by CCL/FL ratio (AUC, 0.780 (95% CI: 0.657-0.904), P < .001), CCL/VD ratio (AUC, 0.677 (95% CI: 0.559-0.795), P < .01). CONCLUSION: The corpus callosum biometric parameters in fetuses with MCD are reduced. The CCL/ICOFD ratio derived from sonographic measurements is considered a promising tool for the prenatal detection of cortical malformations. External validation of these findings and prospective studies are warranted.


Assuntos
Corpo Caloso , Ultrassonografia Pré-Natal , Humanos , Feminino , Gravidez , Ultrassonografia Pré-Natal/métodos , Estudos Retrospectivos , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/embriologia , Adulto , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/embriologia , Reprodutibilidade dos Testes
2.
Ecotoxicol Environ Saf ; 270: 115862, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157801

RESUMO

Epidemiological and experimental research has indicated an association between perfluorooctane sulfonate (PFOS) exposure and liver disease. However, the potential hepatotoxic effects and mechanisms of low-level prenatal PFOS exposure in offspring remain ambiguous. The objective of this research was to examine the alterations in liver transcriptomic and metabolomic profiles in offspring rats at postnatal day (PND) 30 following gestational and lactational exposure to PFOS (from gestational day 1 to 20 and PND 1 to 21). Pregnant Sprague-Dawley rats were separated into a control group (3% starch gel solution, oral gavage) and a PFOS exposure group (0.03 mg/kg body weight per day, oral gavage). Histopathological changes in liver sections were observed by hematoxylin and eosin staining. Biochemical analysis was conducted to evaluate changes in glucose and lipid metabolism. Transcriptomic and metabolomic analyses were utilized to identify significant genes and metabolites associated with alterations of liver glucose and lipid metabolism through an integrated multi-omics analysis. No significant differences were found in the measured biochemical parameters. In total, 167 significant differentially expressed genes (DEGs) related to processes such as steroid biosynthesis, PPAR signaling pathway, and fat digestion and absorption were identified in offspring rats in the PFOS exposure group. Ninety-five altered metabolites were exhibited in the PFOS exposure group, such as heptaethylene glycol, lysoPE (0:0/18:0), lucidenic acid K, and p-Cresol sulfate. DEGs associated with steroid biosynthesis, PPAR signaling pathway, fat digestion and absorption were significantly upregulated in the PFOS exposure group (P < 0.05). The analysis of correlations indicated that there was a significant inverse correlation between all identified differential metabolites and the levels of fasting blood glucose, high-density lipoprotein, and triglycerides in the PFOS exposure group (P < 0.05). Our findings demystify that early-life PFOS exposure can lead to alterations in transcriptomic and metabolomic profiles in the offspring's liver, which provided mechanistic insights into the potential hepatotoxicity and developmental toxicity associated with environmentally relevant levels of PFOS exposure.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Feminino , Ratos , Animais , Ratos Sprague-Dawley , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Animais Recém-Nascidos , Exposição Materna/efeitos adversos , Lactação , Fígado , Glucose/metabolismo , Perfilação da Expressão Gênica , Esteroides/metabolismo , Fluorocarbonos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA