Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 116(5): 1325-1341, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596913

RESUMO

Sensing of environmental challenges, such as mechanical injury, by a single plant tissue results in the activation of systemic signaling, which attunes the plant's physiology and morphology for better survival and reproduction. As key signals, both calcium ions (Ca2+ ) and hydrogen peroxide (H2 O2 ) interplay with each other to mediate plant systemic signaling. However, the mechanisms underlying Ca2+ -H2 O2 crosstalk are not fully revealed. Our previous study showed that the interaction between glycolate oxidase and catalase, key enzymes of photorespiration, serves as a molecular switch (GC switch) to dynamically modulate photorespiratory H2 O2 fluctuations via metabolic channeling. In this study, we further demonstrate that local wounding induces a rapid shift of the GC switch to a more interactive state in systemic leaves, resulting in a sharp decrease in peroxisomal H2 O2 levels, in contrast to a simultaneous outburst of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived apoplastic H2 O2 . Moreover, the systemic response of the two processes depends on the transmission of Ca2+ signaling, mediated by glutamate-receptor-like Ca2+ channels 3.3 and 3.6. Mechanistically, by direct binding and/or indirect mediation by some potential biochemical sensors, peroxisomal Ca2+ regulates the GC switch states in situ, leading to changes in H2 O2 levels. Our findings provide new insights into the functions of photorespiratory H2 O2 in plant systemic acclimation and an optimized systemic H2 O2 signaling via spatiotemporal interplay between the GC switch and NADPH oxidases.


Assuntos
Oxirredutases do Álcool , Plantas , Catalase/metabolismo , Plantas/metabolismo , Oxirredutases do Álcool/metabolismo , Receptores de Glutamato , Peróxido de Hidrogênio/metabolismo
2.
J Colloid Interface Sci ; 664: 882-892, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493653

RESUMO

The active cyano-group in polyacrylonitrile has severe passivation of lithium anode under larger current density, which restricts the wide application of polyacrylonitrile(PAN) in lithium metal batteries. Herein, in order to address the excessive passivation of lithium metal by PAN, inspired by the pre-oxidation of carbon fibers, PAN was pre-oxidized at 230 °C, which transformed part of the cyano group into a more chemically stable cyclized structure. The electrochemical and mechanical properties of the composite solid electrolyte were effectively improved by introducing the fast ionic conductor Li6.25La3Zr2Al0.25O12 into PAN by electrospinning. The oxidized PAN-based composite solid electrolyte presents high ionic conductivity (3.05 × 10-3 S·cm-1) and high lithium transference number of 0.79 at 25 °C, further contributing to a high electrochemical window (5.3 V). The solid-state batteries assembled by Li||10 wt%-LLZAO@230-oxy-PAN||NCM523 behave superb electrochemical performance, delivering a high initial discharge capacity of 157 mAh g-1 at 0.2 C. After 100 cycles, the capacity retention was 93.3 %, indicating the electrolyte displays great electrochemical stability. This work provides new insights into the structural design of polymer-based high-voltage batteries.

3.
Front Pharmacol ; 15: 1345070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799165

RESUMO

Background: Vandetanib is a small-molecule tyrosine kinase inhibitor. It exerts its therapeutic effects primarily in a range of lung cancers by inhibiting the vascular endothelial growth factor receptor 2. However, it remains unclear whether vandetanib has therapeutic benefits in other lung diseases, particularly asthma. The present study investigated the pioneering use of vandetanib in the treatment of asthma. Methods: In vivo experiments including establishment of an asthma model, measurement of airway resistance measurement and histological analysis were used primarily to confirm the anticontractile and anti-inflammatory effects of vandetanib, while in vitro experiments, including measurement of muscle tension and whole-cell patch-clamp recording, were used to explore the underlying molecular mechanism. Results: In vivo experiments in an asthmatic mouse model showed that vandetanib could significantly alleviate systemic inflammation and a range of airway pathological changes including hypersensitivity, hypersecretion and remodeling. Subsequent in vitro experiments showed that vandetanib was able to relax the precontracted rings of the mouse trachea via calcium mobilization which was regulated by specific ion channels including VDLCC, NSCC, NCX and K+ channels. Conclusions: Taken together, our study demonstrated that vandetanib has both anticontractile and anti-inflammatory properties in the treatment of asthma, which also suggests the feasibility of using vandetanib in the treatment of asthma by reducing abnormal airway contraction and systemic inflammation.

4.
J Colloid Interface Sci ; 642: 321-329, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011450

RESUMO

The garnet ceramic Li6.4La3Zr1.4Ta0.6O12 (LLZTO) modified separators have been proposed to overcome the poor thermal stability and wettability of commercial polyolefin separators. However, the side reaction of LLZTO in the air leads to deterioration of environmental stability of composite separators (PP-LLZTO), which will limit the electrochemical performance of batteries. Herein, the LLZTO with the polydopamine (PDA) coating (LLZTO@PDA) was prepared by solution oxidation, and then applied it to a commercial polyolefin separator to achieve a composite separator (PP-LLZTO@PDA). LLZTO@PDA is stable in the air, and no Li2CO3 can be observed on the surface even after 90 days in the air. Besides, LLZTO@PDA coating endows the PP-LLZTO@PDA separator with the tensile strength (up to 103 MPa), good wettability (contact angle 0°) and high ionic conductivity (0.93 mS cm-1). Consequently, the Li/PP-LLZTO@PDA/Li symmetric cell cycles stably for 600 h without significant dendrites generation, and the assembled Li//LFP cells with PP-LLZTO@PDA-D30 separators deliver a high capacity retention of 91.8% after 200 cycles at 0.1C. This research provides a practical strategy for constructing composite separators with excellent environmental stability and high electrochemical properties.

5.
Materials (Basel) ; 16(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984123

RESUMO

Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with periodic networks that are constructed from small molecular units via covalent bonds, which have low densities, high porosity, large specific surface area, and ease of functionalization. The one-dimension nanochannels in COFs offer an effective means of transporting lithium ions while maintaining a stable structure over a wide range of temperatures. As a new category of ionic conductors, COFs exhibit unparalleled application potential in solid-state electrolytes. Here, we provide a comprehensive summary of recent applications and research progress for COFs in solid-state electrolytes of lithium metal batteries and discuss the possible development directions in the future. This review is expected to provide theoretical guidance for the design of high-performance solid-state electrolytes.

6.
Sci Total Environ ; 821: 153276, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074389

RESUMO

Accurate prediction of the future PM2.5 concentration is crucial to human health and ecological environmental protection. Nowadays, deep learning methods show advantages in the prediction of PM2.5 concentration, but few of the studies can achieve accurate prediction of short term (within 6 h) concentration and also catch longer term (6-24 h) change trends. To address this issue, this study constructs a novel hybrid prediction model by combining the empirical mode decomposition (EMD) method, sample entropy (SE) index and bidirectional long and short-term memory neural network (BiLSTM) to predict 0-24 h PM2.5 concentrations. The experimental results show that the hybrid model has good performance on PM2.5 prediction with R2 = 0.987, RMSE = 2.77 µg/m3 at T + 1 moment and R2 = 0.904, RMSE = 7.51 µg/m3 at T + 6 moment. The novel model improves the accuracy on short-term (within 6 h) prediction of PM2.5 concentrations by at least 50% compared with other single deep learning models. Moreover, it well catches the variation trend of PM2.5 concentrations after 6 h till 24 h.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Entropia , Previsões , Humanos , Memória de Curto Prazo , Redes Neurais de Computação , Material Particulado/análise
7.
Front Plant Sci ; 13: 890581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548272

RESUMO

Lysine ubiquitination is a highly conserved post-translational modification with diverse biological functions. However, there is little available information on lysine ubiquitination of non-histone proteins in papaya (Carica papaya L.). In total, 3,090 ubiquitination sites on 1,249 proteins with diverse localizations and functions were identified. Five conserved ubiquitinated K motifs were identified. Enrichment analysis showed that many Hsps were differentially ubiquitinated proteins (DUPs), suggesting an essential role of ubiquitination in degradation of molecular chaperone. Furthermore, 12 sugar metabolism-related enzymes were identified as DUPs, including an involvement of ubiquitination in nutrimental changes during the papaya ripening process. The ubiquitination levels of five fruit ripening-related DUPs, including one ethylene-inducible protein, two 1-aminocyclopropane-1-carboxylic acid oxidases, one endochitinase, and one cell wall invertase, were significantly changed during the ripening process. Our study extends the understanding of diverse functions for lysine ubiquitination in regulation of the papaya fruit ripening process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA