Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(10): 3237-3242, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437641

RESUMO

Traditional semiconductor quantum dots of groups II-VI are key ingredients of next-generation display technology. Yet, the majority of them contain toxic heavy-metal elements, thus calling for alternative light-emitting materials. Herein, we have explored three novel categories of multicomponent compounds, namely, tetragonal II-III2-VI4 porous ternary compounds, cubic I2-II3-VI4 ternary compounds, and cubic I-II-III3-V4 quaternary compounds. This is achieved by judicious introduction of a "super atom" perspective and concurrently varying the solid-state lattice packing of involved super atoms or the population of surrounding counter cations. Based on first-principles calculations of 392 candidate materials with designed crystal structures, 53 highly stable materials have been screened. Strikingly, 34 of them are direct-bandgap semiconductors with emitting wavelengths covering the near-infrared and visible-light regions. This work provides a comprehensive database of highly efficient light-emitting materials, which may be of interest for a broad field of optoelectronic applications.

2.
Nanoscale ; 16(17): 8447-8454, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38577736

RESUMO

Quantum dots are widely recognized for their advantageous light-emitting properties. Their excitonic fine structure along with the high quantum yields offers a wide range of possibilities for technological applications. However, especially for the case of colloidal QDs, there are still characteristics and properties which are not adequately controlled and downgrade their performance for applications which go far beyond the simple light emission. Such a challenging task is the ability to manipulate the energetic ordering of exciton and biexciton emission and subsequently control phenomena such as Auger recombination, optical gain and photon entanglement. In the present work we attempt to engineer this ordering for the case of InP QDs embedded in polymer matrix, by means of their size, the dielectric confinement and external electric fields. We employ well tested, state of the art theoretical methods, in order to explore the conditions under which the exciton-biexciton configuration creates the desired conditions either for optical gain or photon entanglement. Indeed, this appears to be feasible for QDs with small diameters (1 nm, 1.5 nm) embedded in a host material with high dielectric constant and additional external electric fields. These findings offer a new design principle which might be complementary to the well-established type II core-shell QDs approach for achieving electron-hole separation.

3.
J Phys Chem Lett ; 15(24): 6266-6271, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38844414

RESUMO

Traditional semiconductors are known to exhibit excellent electrical properties but oversized lattice thermal conductivities, thus limiting their thermoelectric performance. Herein, we have discovered a low-energy allotrope of those traditional semiconductors. Compared with the wurtzite structure, the lattice thermal conductivity is reduced by more than five times in the haeckelite structure. This is attributed to the softening of acoustic phonon modes and concurrently enhanced anharmonicity in the haeckelite structure. Benefiting from the suppressed lattice thermal conductivity while retaining the excellent electrical properties of wurtzite structure, haeckelite compounds have been proven to be a novel category of high-performance thermoelectric materials. As an excellent representative, haeckelite CdTe exhibits a peak figure of merit approaching 1.3 at n-type doping and high temperature, which experiences a 3-fold improvement compared with its wurtzite counterpart. This work provides an alternative pathway of engineering the lattice thermal conductivities of traditional semiconductors toward superior thermoelectric properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA