Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Anal Chem ; 88(2): 1100-5, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26691325

RESUMO

A planar, chip-based flow cell for UV-vis absorbance detection in HPLC is presented. The device features a microfabricated free-standing liquid core waveguide (LCW) capillary detection tube of long path length that is based on total internal reflection. We report on the linearity and calibration slope characteristics of lithographically produced LCWs with different interior/exterior geometries. 3D ray tracing was indispensable in modeling behavior in the more demanding geometries: multipath behavior may be intrinsic to these waveguides with consequent nonlinearity. Fortunately, nonlinearity in lithographically easy-to-produce waveguide geometries (such as with a flat, concave exterior and a round interior) is not as detrimental as might be initially expected. Experimental performance is predictably affected by the attainable surface quality of the LCW and efficient and reproducible coupling of the input light into the LCW.

2.
Chem Soc Rev ; 44(17): 6187-229, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26035697

RESUMO

Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as liquid transport, metering, mixing and valving. The available unit operations cover the entire range of automated liquid handling requirements and enable efficient miniaturization, parallelization, and integration of assays.


Assuntos
Centrifugação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Centrifugação/métodos , Química Clínica/instrumentação , Química Clínica/métodos , Desenho de Equipamento , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Humanos , Ácidos Nucleicos/análise
3.
Biomed Microdevices ; 15(1): 1-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22833153

RESUMO

We present a new method for the distinct specific chemical stimulation of single cells and small cell clusters within their natural environment. By single-drop release of chemical agents with droplets in size of typical cell diameters (d <30 µm) on-demand micro gradients can be generated for the specific manipulation of single cells. A single channel and a double channel agent release cartridge with integrated fluidic structures and integrated agent reservoirs are shown, tested, and compared in this publication. The single channel setup features a fluidic structure fabricated by anisotropic etching of silicon. To allow for simultaneous release of different agents even though maintaining the same device size, the second type comprises a double channel fluidic structure, fabricated by photolithographic patterning of TMMF. Dispensed droplet volumes are V = 15 pl and V = 10 pl for the silicon and the TMMF based setups, respectively. Utilizing the agent release cartridges, the application in biological assays was demonstrated by hormone-stimulated premature bud formation in Physcomitrella patens and the individual staining of one single L 929 cell within a confluent grown cell culture.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única/instrumentação , Bryopsida/citologia , Bryopsida/efeitos dos fármacos , Citocininas/farmacologia
4.
Appl Microbiol Biotechnol ; 96(3): 841-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22968354

RESUMO

Enzymatically catalyzed biofuel cells show unique specificity and promise high power densities, but suffer from a limited lifetime due to enzyme deactivation. In the present work, we demonstrate a novel concept to extend the lifetime of a laccase-catalyzed oxygen reduction cathode in which we decouple the electrode lifetime from the limited enzyme lifetime by a regular resupply of fresh enzymes. Thereto, the adsorption behavior of laccase from Trametes versicolor to buckypaper electrode material, as well as its time-dependent deactivation characteristics, has been investigated. Laccase shows a Langmuir-type adsorption to the carbon nanotube-based buckypaper electrodes, with a mean residence time of 2 days per molecule. In a citrate buffer of pH 5, laccase does not show any deactivation at room temperature for 2 days and exhibits a half-life of 9 days. In a long-term experiment, the laccase electrodes were operated at a constant galvanostatic load. The laccase-containing catholyte was periodically exchanged against a freshly prepared one every second day to provide sufficient active enzymes in the catholyte for the replacement of desorbed inactive enzymes. Compared to a corresponding control experiment without catholyte exchange, this procedure resulted in a 2.5 times longer cathode lifetime of 19 ± 9 days in which the electrode showed a potential above 0.744 V vs. normal hydrogen electrode at 110 µA cm(-2). This clearly indicates the successful exchange of molecules by desorption and re-adsorption and is a first step toward the realization of a self-regenerating enzymatic biofuel cell in which enzyme-producing microorganisms are integrated into the electrode to continuously resupply fresh enzymes.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Lacase/metabolismo , Trametes/enzimologia , Eletricidade Estática , Fatores de Tempo
5.
Lab Chip ; 21(11): 2255-2264, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33908535

RESUMO

For large-scale analysis of complex protein mixtures, liquid chromatography - tandem mass spectrometry (LC-MS/MS) has been proven to be one of the most versatile tools due to its high sensitivity and ability to both identify and quantify thousands of proteins in a single measurement. Sample preparation typically comprises site-specific cleavage of proteins into peptides, followed by desalting and concomitant peptide enrichment, which is commonly performed by solid phase extraction. Desalting workflows may include multiple liquid handling steps and are thus error prone and labour intensive. To improve the reproducibility of sample preparation for low amounts of protein, we present a centrifugal microfluidic disk that automates all liquid handling steps required for peptide desalting by solid phase extraction (DesaltingDisk). Microfluidic implementation was enabled by a novel centrifugal microfluidic dosing on demand structure that enabled mapping multiple washing steps onto a microfluidic disk. Evaluation of the microfluidic disk was performed by LC-MS/MS analysis of tryptic HEK-293 eukaryotic cell peptide mixtures desalted either using the microfluidic disk or a manual workflow. A comparable number of peptides were identified in the disk and manual set with 19 775 and 20 212 identifications, respectively. For a core set of 10 444 peptides that could be quantified in all injections, intensity coefficients of variation were calculated based on label-free quantitation intensities. The disk set featured smaller variability with a median CV of 9.3% compared to the median CV of 12.6% for the manual approach. Intensity CVs on protein level were lowered from 5.8% to 4.2% when using the LabDisk. Interday reproducibility for both workflows was assessed by LC-SRM/MS analysis of samples that were spiked with 11 synthetic peptides of varying hydrophobicity. Except for the most hydrophilic and hydrophobic peptides, the average CV was lowered to 3.6% for the samples processed with the disk compared to 7.2% for the manual workflow. The presented centrifugal microfluidic DesaltingDisk demonstrates the potential to improve reproducibility in the sample preparation workflow for proteomic mass spectrometry, especially for application with limited amount of sample material.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Automação , Cromatografia Líquida , Células HEK293 , Humanos , Microfluídica , Peptídeos , Reprodutibilidade dos Testes
6.
Lab Chip ; 20(16): 2937-2946, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32780041

RESUMO

Mass spectrometry has become an important analytical tool for protein research studies to identify, characterise and quantify proteins with unmatched sensitivity in a highly parallel manner. When transferred into clinical routine, the cumbersome and error-prone sample preparation workflows present a major bottleneck. In this work, we demonstrate tryptic digestion of human serum that is fully automated by centrifugal microfluidics. The automated workflow comprises denaturation, digestion and acidification. The input sample volume is 1.3 µl only. A triplicate of human serum was digested with the developed microfluidic chip as well as with a manual reference workflow on three consecutive days to assess the performance of our system. After desalting and liquid chromatography tandem mass spectrometry, a total of 604 proteins were identified in the samples digested with the microfluidic chip and 602 proteins with the reference workflow. Protein quantitation was performed using the Hi3 method, yielding a 7.6% lower median intensity CV for automatically digested samples compared to samples digested with the reference workflow. Additionally, 17% more proteins were quantitated with less than 30% CV in the samples from the microfluidic chip, compared to the manual control samples. This improvement can be attributed to the accurate liquid metering with all volume CVs below 1.5% on the microfluidic chip. The presented automation solution is attractive for laboratories in need of robust automation of sample preparation from small volumes as well as for labs with a low or medium throughput that does not allow for large investments in robotic systems.


Assuntos
Microfluídica , Proteômica , Automação , Cromatografia Líquida , Digestão , Humanos , Espectrometria de Massas
7.
Biotechnol Adv ; 41: 107537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32199980

RESUMO

Next generation sequencing is in the process of evolving from a technology used for research purposes to one which is applied in clinical diagnostics. Recently introduced high throughput and benchtop instruments offer fully automated sequencing runs at a lower cost per base and faster assay times. In turn, the complex and cumbersome library preparation, starting with isolated nucleic acids and resulting in amplified and barcoded DNA with sequencing adapters, has been identified as a significant bottleneck. Library preparation protocols usually consist of a multistep process and require costly reagents and substantial hands-on-time. Considerable emphasis will need to be placed on standardisation to ensure robustness and reproducibility. This review presents an overview of the current state of automation of library preparation for next generation sequencing. Major challenges associated with library preparation are outlined and different automation strategies are classified according to their functional principle. Pipetting workstations allow high-throughput processing yet offer limited flexibility, whereas microfluidic solutions offer great potential due to miniaturisation and decreased investment costs. For the emerging field of single cell transcriptomics for example, microfluidics enable singularisation of tens of thousands of cells in nanolitre droplets and barcoding of the RNA to assign each nucleic acid sequence to its cell of origin. Finally, two applications, the characterisation of bacterial pathogens and the sequencing within human immunogenetics, are outlined and benefits of automation are discussed.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , RNA , Automação , Biblioteca Gênica , Humanos , Reprodutibilidade dos Testes
8.
Lab Chip ; 19(22): 3745-3770, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31596297

RESUMO

Centrifugal microfluidics allows for miniaturization, automation and parallelization of laboratory workflows. The fact that centrifugal forces are always directed radially outwards has been considered a main drawback for the implementation of complex workflows leading to the requirement of additional actuation forces for pumping, valving and switching. In this work, we review and discuss the combination of centrifugal with pneumatic forces which enables transport of even complex liquids in any direction on centrifugal systems, provides actuation for valving and switching, offers alternatives for mixing and enables accurate and precise metering and aliquoting. In addition, pneumatics can be employed for timing to carry out any of the above listed unit operations in a sequential and cascaded manner. Firstly, different methods to generate pneumatic pressures are discussed. Then, unit operations and applications that employ pneumatics are reviewed. Finally, a tutorial section discusses two examples to provide insight into the design process. The first tutorial explains a comparatively simple implementation of a pneumatic siphon valve and provides a workflow to derive optimum design parameters. The second tutorial discusses cascaded pneumatic operations consisting of temperature change rate actuated valving and subsequent pneumatic pumping. In conclusion, combining pneumatic actuation with centrifugal microfluidics allows for the design of robust fluidic networks with simple fluidic structures that are implemented in a monolithic fashion. No coatings are required and the overall demands on manufacturing are comparatively low. We see the combination of centrifugal forces with pneumatic actuation as a key enabling technology to facilitate compact and robust automation of biochemical analysis.

9.
Lab Chip ; 18(2): 362-370, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29297912

RESUMO

In centrifugal microfluidics, dead volumes in valves downstream of mixing chambers can hardly be avoided. These dead volumes are excluded from mixing processes and hence cause a concentration gradient. Here we present a new bubble mixing concept which avoids such dead volumes. The mixing concept employs heating to create a temperature change rate (TCR) induced overpressure in the air volume downstream of mixing chambers. The main feature is an air vent with a high fluidic resistance, representing a low pass filter with respect to pressure changes. Fast temperature increase causes rapid pressure increase in downstream structures pushing the liquid from downstream channels into the mixing chamber. As air further penetrates into the mixing chamber, bubbles form, ascend due to buoyancy and mix the liquid. Slow temperature/pressure changes equilibrate through the high fluidic resistance air vent enabling sequential heating/cooling cycles to repeat the mixing process. After mixing, a complete transfer of the reaction volume into the downstream fluidic structure is possible by a rapid cooling step triggering TCR actuated valving. The new mixing concept is applied to rehydrate reagents for loop-mediated isothermal amplification (LAMP). After mixing, the reaction mix is aliquoted into several reaction chambers for geometric multiplexing. As a measure for mixing efficiency, the mean coefficient of variation (C[combining macron]V[combining macron], n = 4 LabDisks) of the time to positivity (tp) of the LAMP reactions (n = 11 replicates per LabDisk) is taken. The C[combining macron]V[combining macron] of the tp is reduced from 18.5% (when using standard shake mode mixing) to 3.3% (when applying TCR actuated bubble mixing). The bubble mixer has been implemented in a monolithic fashion without the need for any additional actuation besides rotation and temperature control, which are needed anyhow for the assay workflow.

10.
Biomicrofluidics ; 11(2): 024114, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28798850

RESUMO

Automated and robust separation of 14 µl of plasma from 40 µl of whole blood at a purity of 99.81% ± 0.11% within 43 s is demonstrated for the hematocrit range of 20%-60% in a centrifugal microfluidic polymer disk. At high rotational frequency, red blood cells (RBCs) within whole blood are concentrated in a radial outer RBC collection chamber. Simultaneously, plasma is concentrated in a radial inner pneumatic chamber, where a defined air volume is enclosed and compressed. Subsequent reduction of the rotational frequency to not lower than 25 Hz enables rapid transfer of supernatant plasma into a plasma collection chamber, with highly suppressed resuspension of red blood cells. Disk design and the rotational protocol are optimized to make the process fast, robust, and insusceptible for undesired cell resuspension. Numerical network simulation with lumped model elements is used to predict and optimize the fluidic characteristics. Lysis of the remaining red blood cells in the purified plasma, followed by measurement of the hemoglobin concentration, was used to determine plasma purity. Due to the pneumatic actuation, no surface treatment of the fluidic cartridge or any additional external means are required, offering the possibility for low-cost mass fabrication technologies, such as injection molding or thermoforming.

11.
Lab Chip ; 17(9): 1666-1677, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28426080

RESUMO

We present a fully automated centrifugal microfluidic method for particle based protein immunoassays. Stick-pack technology is employed for pre-storage and release of liquid reagents. Quantitative layout of centrifugo-pneumatic particle handling, including timed valving, switching and pumping is assisted by network simulations. The automation is exclusively controlled by the spinning frequency and does not require any additional means. New centrifugal microfluidic process chains are developed in order to sequentially supply wash buffer based on frequency dependent stick-pack opening and pneumatic pumping to perform two washing steps from one stored wash buffer; pre-store and re-suspend functionalized microparticles on a disk; and switch between the path of the waste fluid and the path of the substrate reaction product with 100% efficiency. The automated immunoassay concept is composed of on demand ligand binding, two washing steps, the substrate reaction, timed separation of the reaction products, and termination of the substrate reaction. We demonstrated separation of particles from three different liquids with particle loss below 4% and residual liquid remaining within particles below 3%. The automated immunoassay concept was demonstrated by means of detecting C-reactive protein (CRP) in the range of 1-81 ng ml-1 and interleukin 6 (IL-6) in the range of 64-13 500 pg ml-1. The limit of detection and quantification were 1.0 ng ml-1 and 2.1 ng ml-1 for CRP and 64 pg ml-1 and 205 pg ml-1 for IL-6, respectively.


Assuntos
Proteína C-Reativa/análise , Imunoensaio/instrumentação , Interleucina-6/análise , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Humanos , Imunoensaio/métodos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Modelos Lineares , Técnicas Analíticas Microfluídicas/métodos , Reprodutibilidade dos Testes
12.
Lab Chip ; 17(5): 864-875, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28181607

RESUMO

We present new unit operations for valving and switching in centrifugal microfluidics that are actuated by a temperature change rate (TCR) and controlled by the rotational frequency. Implementation is realized simply by introducing a comparatively large fluidic resistance to an air vent of a fluidic structure downstream of a siphon channel. During temperature decrease at a given TCR, the air pressure inside the downstream structure decreases and the fluidic resistance of the air vent slows down air pressure compensation allowing a thermally induced underpressure to build up temporarily. Thereby the rate of temperature change determines the time course of the underpressure for a given geometry. The thermally induced underpressure pulls the liquid against a centrifugal counterpressure above a siphon crest, which triggers the valve or switch. The centrifugal counterpressure (adjusted by rotation) serves as an independent control parameter to allow or prevent valving or switching at any TCR. The unit operations are thus compatible with any temperature or centrifugation protocol prior to valving or switching. In contrast to existing methods, this compatibility is achieved at no additional costs: neither additional fabrication steps nor additional disk space or external means are required besides global temperature control, which is needed for the assay. For the layout, an analytical model is provided and verified. The TCR actuated unit operations are demonstrated, first, by a stand-alone switch that routes the liquid to either one of the two collection chambers (n = 6) and, second, by studying the robustness of TCR actuated valving within a microfluidic cartridge for highly integrated nucleic acid testing. Valving could safely be prevented during PCR by compensating the thermally induced underpressure of 3.52 kPa with a centrifugal counterpressure at a rotational frequency of 30 Hz with a minimum safety range to valving of 2.03 kPa. Subsequently, a thermally induced underpressure of 2.55 kPa was utilized for robust siphon valving at 3 Hz with a minimum safety range of 2.32 kPa.

13.
Lab Chip ; 6(8): 1040-4, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16874375

RESUMO

We present a novel microfluidic concept to enable a fast colorimetric alcohol assay from a single droplet of whole blood. The reduced turn-around time of 150 seconds is, on the one hand, achieved by a full process integration including metering, mixing with reagents, and sedimentation of cellular constituents. On the other hand, our novel total internal reflection (TIR) scheme allows to monitor the increase of the absorbance values in real-time. Thus, the saturation values can be predicted accurately based on an extrapolation of real-time measurements acquired during a 100 second initial period of rotation. Additionally, we present a metering structure to define nanolitre sample volumes at a coefficient of variation (CV) below 5%.


Assuntos
Análise Química do Sangue , Etanol/sangue , Técnicas Analíticas Microfluídicas , Calorimetria , Humanos , Microfluídica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Biomol Detect Quantif ; 7: 1-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27077046

RESUMO

Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 µl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 µl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

15.
Lab Chip ; 16(2): 261-8, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26607320

RESUMO

We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.


Assuntos
Centrifugação , Peróxido de Hidrogênio/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Oxigênio/química , Água/química , Células Sanguíneas/química , DNA/análise , Humanos
16.
Lab Chip ; 16(10): 1873-85, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27095248

RESUMO

Centrifugal microfluidics shows a clear trend towards a higher degree of integration and parallelization. This trend leads to an increase in the number and density of integrated microfluidic unit operations. The fact that all unit operations are processed by the same common spin protocol turns higher integration into higher complexity. To allow for efficient development anyhow, we introduce advanced lumped models for network simulations in centrifugal microfluidics. These models consider the interplay of centrifugal and Euler pressures, viscous dissipation, capillary pressures and pneumatic pressures. The simulations are fast and simple to set up and allow for the precise prediction of flow rates as well as switching and valving events. During development, channel and chamber geometry variations due to manufacturing tolerances can be taken into account as well as pipetting errors, variations of contact angles, compliant chamber walls and temperature variations in the processing device. As an example of considering these parameters during development, we demonstrate simulation based robustness analysis for pneumatic siphon valving in centrifugal microfluidics. Subsequently, the influence of liquid properties on pumping and valving is studied for four liquids relevant for biochemical analysis, namely, water (large surface tension), blood plasma (large contact angle hysteresis), ethanol/water (highly wetting) and glycerine/water (highly viscous). In a second example, we derive a spin protocol to attain a constant flow rate under varying pressure conditions. Both examples show excellent agreement with experimental validations.


Assuntos
Centrifugação/instrumentação , Dispositivos Lab-On-A-Chip , Modelos Teóricos , Simulação por Computador
17.
Sci Rep ; 6: 32837, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27596612

RESUMO

The isolation and analysis of single prokaryotic cells down to 1 µm and less in size poses a special challenge and requires micro-engineered devices to handle volumes in the picoliter to nanoliter range. Here, an advanced Single-Cell Printer (SCP) was applied for automated and label-free isolation and deposition of bacterial cells encapsulated in 35 pl droplets by inkjet-like printing. To achieve this, dispenser chips to generate micro droplets have been fabricated with nozzles 20 µm in size. Further, the magnification of the optical system used for cell detection was increased. Redesign of the optical path allows for collision-free addressing of any flat substrate since no compartment protrudes below the nozzle of the dispenser chip anymore. The improved system allows for deterministic isolation of individual bacterial cells. A single-cell printing efficiency of 93% was obtained as shown by printing fluorescent labeled E. coli. A 96-well plate filled with growth medium is inoculated with single bacteria cells on average within about 8 min. Finally, individual bacterial cells from a heterogeneous sample of E. coli and E. faecalis were isolated for clonal culturing directly on agar plates in user-defined array geometry.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Fenômenos Fisiológicos Celulares , Separação Celular/métodos , Escherichia coli/citologia , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Separação Celular/instrumentação , Sobrevivência Celular , Escherichia coli/fisiologia , Impressão
18.
Lab Chip ; 16(1): 199-207, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26610171

RESUMO

Portable point-of-care devices for pathogen detection require easy, minimal and user-friendly handling steps and need to have the same diagnostic performance compared to centralized laboratories. In this work we present a fully automated sample-to-answer detection of influenza A H3N2 virus in a centrifugal LabDisk with complete prestorage of reagents. Thus, the initial supply of the sample remains the only manual handling step. The self-contained LabDisk automates by centrifugal microfluidics all necessary process chains for PCR-based pathogen detection: pathogen lysis, magnetic bead based nucleic acid extraction, aliquoting of the eluate into 8 reaction cavities, and real-time reverse transcription polymerase chain reaction (RT-PCR). Prestored reagents comprise air dried specific primers and fluorescence probes, lyophilized RT-PCR mastermix and stick-packaged liquid reagents for nucleic acid extraction. Employing two different release frequencies for the stick-packaged liquid reagents enables on-demand release of highly wetting extraction buffers, such as sequential release of lysis and binding buffer. Microfluidic process-flow was successful in 54 out of 55 tested LabDisks. We demonstrate successful detection of the respiratory pathogen influenza A H3N2 virus in a total of 18 LabDisks with sample concentrations down to 2.39 × 10(4) viral RNA copies per ml, which is in the range of clinical relevance. Furthermore, we detected RNA bacteriophage MS2 acting as internal control in 3 LabDisks with a sample concentration down to 75 plaque forming units (pfu) per ml. All experiments were applied in a 2 kg portable, laptop controlled point-of-care device. The turnaround time of the complete analysis from sample-to-answer was less than 3.5 hours.


Assuntos
Indicadores e Reagentes/química , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Técnicas Analíticas Microfluídicas , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/instrumentação
19.
Lab Chip ; 5(5): 560-5, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15856095

RESUMO

We present two novel fluidic concepts to drastically accelerate the process of mixing in batch-mode (stopped-flow) on centrifugal microfluidic platforms. The core of our simple and robust setup exhibits a microstructured disk with a round mixing chamber rotating on a macroscopic drive unit. In the first approach, magnetic beads which are prefilled into the mixing chamber are periodically deflected by a set of permanent magnets equidistantly aligned at spatially fixed positions in the lab-frame. Their radial positions alternatingly deviate by a slight positive and negative offset from the mean orbit of the chamber to periodically deflect the beads inbound and outbound during rotation. Advection is induced by the relative motion of the beads with respect to the liquid which results from the magnetic and centrifugal forces, as well as inertia. In a second approach--without magnetic beads--the disk is spun upon periodic changes in the sense of rotation. This way, inertia effects induce stirring of the liquids. As a result, both strategies accelerate mixing from about 7 minutes for mere diffusion to less than five seconds. Combining both effects, an ultimate mixing time of less than one second could be achieved.


Assuntos
Centrifugação/instrumentação , Centrifugação/métodos , Microfluídica/instrumentação , Microfluídica/métodos , Desenho de Equipamento , Magnetismo , Movimento (Física) , Fatores de Tempo
20.
Biomicrofluidics ; 9(1): 014117, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25759750

RESUMO

Label-free isolation of single cells is essential for the growing field of single-cell analysis. Here, we present a device which prints single living cells encapsulated in free-flying picoliter droplets. It combines inkjet printing and impedance flow cytometry. Droplet volume can be controlled in the range of 500 pl-800 pl by piezo actuator displacement. Two sets of parallel facing electrodes in a 50 µm × 55 µm channel are applied to measure the presence and velocity of a single cell in real-time. Polystyrene beads with <5% variation in diameter generated signal variations of 12%-17% coefficients of variation. Single bead efficiency (i.e., printing events with single beads vs. total number of printing events) was 73% ± 11% at a throughput of approximately 9 events/min. Viability of printed HeLa cells and human primary fibroblasts was demonstrated by culturing cells for at least eight days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA