Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(17): 173602, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739278

RESUMO

Rapid progress in cooling and trapping of molecules has enabled first experiments on high-resolution spectroscopy of trapped diatomic molecules, promising unprecedented precision. Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom. Here, this is achieved by combining a homogeneous-field microstructured electric trap, rotational transitions with minimal Stark broadening at a"magic" offset electric field, and optoelectrical Sisyphus cooling of molecules to the low millikelvin temperature regime. We thereby reduce Stark broadening on the J=5←4 (K=3) transition of formaldehyde at 364 GHz to well below 1 kHz, observe Doppler-limited linewidths down to 3.8 kHz, and determine the magic-field line position with an uncertainty below 100 Hz. Our approach opens a multitude of possibilities for investigating diverse polyatomic molecule species.

2.
Nature ; 491(7425): 570-3, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23151480

RESUMO

Polar molecules have a rich internal structure and long-range dipole-dipole interactions, making them useful for quantum-controlled applications and fundamental investigations. Their potential fully unfolds at ultracold temperatures, where various effects are predicted in many-body physics, quantum information science, ultracold chemistry and physics beyond the standard model. Whereas a wide range of methods to produce cold molecular ensembles have been developed, the cooling of polyatomic molecules (that is, with three or more atoms) to ultracold temperatures has seemed intractable. Here we report the experimental realization of optoelectrical cooling, a recently proposed cooling and accumulation method for polar molecules. Its key attribute is the removal of a large fraction of a molecule's kinetic energy in each cycle of the cooling sequence via a Sisyphus effect, allowing cooling with only a few repetitions of the dissipative decay process. We demonstrate the potential of optoelectrical cooling by reducing the temperature of about one million CH(3)F molecules by a factor of 13.5, with the phase-space density increased by a factor of 29 (or a factor of 70 discounting trap losses). In contrast to other cooling mechanisms, our scheme proceeds in a trap, cools in all three dimensions and should work for a large variety of polar molecules. With no fundamental temperature limit anticipated down to the photon-recoil temperature in the nanokelvin range, we expect our method to be able to produce ultracold polyatomic molecules. The low temperatures, large molecule numbers and long trapping times of up to 27 seconds should allow an interaction-dominated regime to be attained, enabling collision studies and investigation of evaporative cooling towards a Bose-Einstein condensate of polyatomic molecules.

3.
Phys Rev Lett ; 116(6): 063005, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26918988

RESUMO

We demonstrate direct cooling of gaseous formaldehyde (H2CO) to the microkelvin regime. Our approach, optoelectrical Sisyphus cooling, provides a simple dissipative cooling method applicable to electrically trapped dipolar molecules. By reducing the temperature by 3 orders of magnitude and increasing the phase-space density by a factor of ∼10(4), we generate an ensemble of 3×10(5) molecules with a temperature of about 420 µK, populating a single rotational state with more than 80% purity.

4.
Chemphyschem ; 17(22): 3631-3640, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27481120

RESUMO

A comprehensive characterisation of cold molecular beams from a cryogenic buffer-gas cell, providing insight into the physics of buffer-gas cooling, is presented. Cold molecular beams are extracted from a cryogenic cell by electrostatic guiding, which is also used to measure their velocity distribution. The rotational-state distribution of the molecules is probed by radio-frequency resonant depletion spectroscopy. With the help of complete trajectory simulations, yielding the guiding efficiency for all of the thermally populated states, it is possible to determine both the rotational and the translational temperature of the molecules at the output of the buffer-gas cell. This thermometry method is demonstrated for various regimes of buffer-gas cooling and beam formation as well as for molecular species of different sizes (CH3 F and CF3 CCH). Comparison of the rotational and translational temperatures provides evidence of faster rotational thermalisation for the CH3 F/He system in the limit of low He density. In addition, the relaxation rates for different rotational states appear to be different.

5.
Phys Rev Lett ; 115(23): 233001, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684114

RESUMO

Controlling the internal degrees of freedom is a key challenge for applications of cold and ultracold molecules. Here, we demonstrate rotational-state cooling of trapped methyl fluoride molecules (CH_{3}F) by optically pumping the population of 16 M sublevels in the rotational states J=3, 4, 5 and 6 into a single level. By combining rotational-state cooling with motional cooling, we increase the relative number of molecules in the state J=4, K=3, M=4 from a few percent to over 70%, thereby generating a translationally cold (≈30 mK) and nearly pure state ensemble of about 10^{6} molecules. Our scheme is extendable to larger sets of initial states, other final states, and a variety of molecule species, thus paving the way for internal-state control of ever-larger molecules.

6.
J Phys Chem Lett ; 13(46): 10728-10733, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36367963

RESUMO

Non-radiative energy transfer between a Rydberg atom and a polar molecule can be controlled by a static electric field. Here, we show how to exploit this control for state-resolved, non-destructive detection and spectroscopy of the molecules, where the lineshape reflects the type of molecular transition. Using the example of ammonia, we identify the conditions for collision-mediated spectroscopy in terms of the required electric field strengths, relative velocities, and molecular densities. Rydberg atom-enabled spectroscopy is feasible with current experimental technology, providing a versatile detection method as a basic building block for applications of polar molecules in quantum technologies and chemical reaction studies.

7.
Rev Sci Instrum ; 88(3): 033101, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372437

RESUMO

Optical frequency combs (OFCs) provide a convenient reference for the frequency stabilization of continuous-wave lasers. We demonstrate a frequency control method relying on tracking over a wide range and stabilizing the beat note between the laser and the OFC. The approach combines fast frequency ramps on a millisecond timescale in the entire mode-hop free tuning range of the laser and precise stabilization to single frequencies. We apply it to a commercially available optical parametric oscillator (OPO) and demonstrate tuning over more than 60 GHz with a ramping speed up to 3 GHz/ms. Frequency ramps spanning 15 GHz are performed in less than 10 ms, with the OPO instantly relocked to the OFC after the ramp at any desired frequency. The developed control hardware and software are able to stabilize the OPO to sub-MHz precision and to perform sequences of fast frequency ramps automatically.

8.
Science ; 358(6363): 645-648, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29025993

RESUMO

Ultracold molecules represent a fascinating research frontier in physics and chemistry, but it has proven challenging to prepare dense samples at low velocities. Here, we present a solution to this goal by means of a nonconventional approach dubbed cryofuge. It uses centrifugal force to bring cryogenically cooled molecules to kinetic energies below 1 K × kB in the laboratory frame, where kB is the Boltzmann constant, with corresponding fluxes exceeding 1010 per second at velocities below 20 meters per second. By attaining densities higher than 109 per cubic centimeter and interaction times longer than 25 milliseconds in samples of fluoromethane as well as deuterated ammonia, we observed cold dipolar collisions between molecules and determined their collision cross sections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA