Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(16): 9118-9122, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383807

RESUMO

We report on the formation of a high-order commensurate (HOC) structure of 5,14-dihydro-5,7,12,14-tetraazapentacene (DHTAP) molecules on the highly corrugated Cu(110)-(2 × 1)O surface. Scanning tunnelling microscopy shows that the DHTAP molecules form a periodic uniaxial arrangement in which groups of seven molecules are distributed over exactly nine substrate lattice spacings along the [1̄10] direction. DFT-calculations reveal that this peculiar arrangement is associated with different tilting of the seven DHTAP molecules within the quasi one-dimensional HOC unit cell. The orientational degree of freedom thus adds a new parameter, which can efficiently stabilize complex molecular structures on corrugated surfaces.

2.
ACS Omega ; 8(33): 30109-30117, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636919

RESUMO

Aurophilicity is a well-known phenomenon in structural gold chemistry and is found in many crystals of Au(I) complexes. However, these attractive dispersion forces between and within complexes containing Au(I) moieties have not been well studied in ultrathin films. In this paper, we elucidate the interaction of chlorido(2-naphthyl isonitrile)gold(I) on and with Au(110) surfaces. Already during physical vapor deposition, the condensation of ultrathin films is monitored by photoelectron emission microscopy (PEEM) and by incremental and spectrally resolved changes in the optical reflectance (DDRS). Additional structural data obtained by STM and LEED reveal that the "crossed swords" packing motif known from the bulk is also present in thin films. The molecular arrangement changes several times during thin-film deposition.

3.
ACS Omega ; 8(41): 38083-38091, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867682

RESUMO

Although aurophilicity is a well-known phenomenon in structural gold chemistry and is found in many crystals of Au(I) complexes, its potential for self-assembly in thin films is not yet explored. This paper is Part II of a study, in which we investigated the ultrathin film formation of chlorido(2-naphthyl isonitrile) gold(I) on gold surfaces. Here, we present the data for the growth of (NapNC)AuCl on isotropic Au(111) surfaces. Already during physical vapor deposition, the condensation of ultrathin films is monitored by photoelectron emission microscopy (PEEM) and incremental and spectrally resolved changes in the optical reflectance (DDRS). Additional structural data obtained by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) reveal that the "crossed swords" packing motif known from the bulk is also present in thin films.

4.
Phys Chem Chem Phys ; 14(39): 13651-5, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22964875

RESUMO

We report a combined reflectance difference spectroscopy and scanning tunneling microscopy study of ultrathin α-sexithiophene (6T) films deposited on the Cu(110)-(2×1)O surface. The correlation between the layer resolved crystalline structure and the corresponding optical spectra data reveals a highly sensitive dependence of the excitonic optical properties on the layer thickness and crystalline structure of the 6T film.


Assuntos
Cobre/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Tiofenos/química , Microscopia de Tunelamento , Estrutura Molecular , Fenômenos Ópticos , Propriedades de Superfície
5.
Appl Surf Sci ; 258(24): 10123-10127, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23482867

RESUMO

Reflectance difference spectroscopy (RDS) is applied to follow in situ the preparation of clean and carburized W(1 1 0) surfaces and to study the temperature-induced transition between the R(15 × 3) and R(15 × 12) carbon/tungsten surface phases. RDS data for this transition are compared to data obtained from Auger-electron spectroscopy and low-energy electron diffraction. All techniques reveal that this transition, occurring around 1870 K, is reversible with a small hysteresis, indicating a first-order-like behaviour. The present results also prove a high surface sensitivity of RDS, which is attributed to the excitation of electronic p-like surface resonances of W(1 1 0).

6.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(10): 2718-21, 2012 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-23285873

RESUMO

The fluorescence emission intensity is vital to scientific observation using fluorescence microscopy. Three important factors influencing the intensity of fluorescence emission were theoretical analyzed, including the absorption ability of excitation photons, fluorescence quantum yield, and fluorescence saturation & fluorescence quenching. The authors pointed out that fluorescence molecules with large optical absorption cross section and high quantum yield can effectively guarantee the fluorescence emission intensity, and one also can avoid unnecessary fluorescence saturation if excitation intensity was determined in a reasonable range. Furthermore, fluorescence quenching experiments were studied in ultra-high vacuum (UHV) and atmospheric environment, respectively. We found that fluorescence quenching in UHV was imperceptible, while the fluorescence intensity in the atmosphere decreased exponentially.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35537096

RESUMO

We report an in situ study of the thin-film growth of cobalt-phthalocyanine on Ag(100) surfaces using photoelectron emission microscopy (PEEM) and the Anderson method. Based on the Fowler-DuBridge theory, we were able to correlate the evolution of the mean electron yield acquired with PEEM for coverages up to two molecular layers of cobalt-phthalocyanine to the global work function changes measured with the Anderson method. For coverages above two monolayers, the transients measured with the Anderson method and those obtained with PEEM show different trends. We exploit this discrepancy to determine the inelastic mean free path of the low-energy electrons while passing through the third layer of CoPc.

8.
Phys Chem Chem Phys ; 13(29): 13382-6, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21709872

RESUMO

Thermally activated layer inversion of ultrathin pentacene/para-sexiphenyl organic heterostructures is observed using a combination of reflectance difference spectroscopy and scanning tunneling microscopy. The heterostructures are formed by deposition of sub-monolayer pentacene (PEN) on top of well ordered para-sexiphenyl (p-6P) layers on Cu(110) at 15 K. When the sample temperature is raised, these heterostructures invert, with pentacene molecules diffusing through the para-sexiphenyl buffer layer and getting in direct contact with the substrate. The observed irreversible inversion demonstrates that the p-6P/PEN/Cu(110) is energetically preferred over PEN/p-6P/Cu(110). Furthermore, the onset temperature of the inversion increases with the layer thickness of para-sexiphenyl indicating a corresponding increase of the kinetic barrier for the inversion. Our results demonstrate the strong influence of the configuration of organic heterostructures on their thermal stability, especially for the very thin layers.

9.
Ultramicroscopy ; 233: 113427, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34990906

RESUMO

Photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM) can easily distinguish between organic molecules adsorbed in crystallites or in the wetting layers as well as the bare metal substrate due to their different electronic properties. Already before (and during) the condensation of such solid phases (2D islands or 3D crystallites), there is a dilute 2D gas phase. Such a 2D gas phase consists of molecules, which are highly mobile and diffuse across the surface. The individual molecules are too small to be resolved in PEEM/LEEM images. Here, we discuss, how image features below and above the resolution limit of a PEEM/LEEM affect the mean electron yield and its (normalized) standard deviation. We support our findings with two experimental examples: the deposition of cobalt phthalocyanine (CoPc) on Ag(100) and of perfluoro-pentacene on Ag(110). Our results demonstrate, how a spatial and temporal analysis of image series can be used to obtain information about molecular phases, which cannot be directly resolved in microscopy images.

10.
Phys Chem Chem Phys ; 12(44): 14706-9, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-20941450

RESUMO

We have studied the growth of para-sexiphenyl (p-6P) on the Cu(110)-(2×1)O surface using reflectance difference spectroscopy (RDS) in combination with scanning tunneling microscopy (STM). The evolution of the optical anisotropy reveals that the growth of p-6P on the Cu(110)-(2×1)O surface at room temperature follows the Stranski-Krastanov growth mode with a two monolayer thick wetting layer. During all stages of growth, the p-6P molecules are well orientated with their long molecular axis aligned parallel to the Cu-O rows along the [001] direction of the Cu(110) substrate. The high packing density of the p-6P molecules in the first and second monolayer evidenced by RDS and STM is believed to be responsible for the switch from layer-by-layer to three-dimensional island growth.

11.
Phys Chem Chem Phys ; 12(13): 3141-4, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20237702

RESUMO

The thickness dependent optical and electronic structure of para-sexiphenyl thin films grown on TiO(2)(110) at around 400 K reveals that the substrate is first wet by one monolayer of molecules lying with their long axis parallel to the [001] direction of the substrate, while the molecules in subsequent layers are almost standing upright. Whilst ultraviolet photoemission spectroscopy (UPS) is sensitive to the molecules in the outermost layer, reflection difference spectroscopy (RDS) shows that the molecules at the buried interface do not dewet and maintain the orientation of the original wetting monolayer.

12.
J Phys Chem C Nanomater Interfaces ; 122(24): 12704-12711, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29963216

RESUMO

Perfluoropentacene (PFP) is an organic material that has been widely studied over the last years and has already found applications in organic electronics. However, fundamental physical questions, such as the structural formation and the preferential orientation of the molecules during deposition on metal surfaces, are still not fully understood. In this work, we report on a unique in-plane molecular reorientation during the completion of the first monolayer of PFP on the Ag(110) surface. To characterize the molecular alignment, we have monitored the deposition process in real time using polarization-dependent differential reflectance spectroscopy and reflectance anisotropy spectroscopy. Abrupt changes in the optical signals reveal an intricate sequence of reorientation transitions of the PFP molecules upon monolayer completion and during the formation of the second monolayer, eventually leading to a full alignment of the long molecular axis along the [001] direction of the substrate and an enhanced structural ordering. Scanning tunneling microscopy and low-energy electron diffraction confirm the observed molecular reorientation upon monolayer compression and provide further details on the structural and orientational ordering of the PFP monolayer before and after compression.

13.
Nanoscale ; 9(46): 18326-18333, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29143040

RESUMO

The bottom-up fabrication of graphene nanoribbons (GNRs) has opened new opportunities to specifically tune their electronic and optical properties by precisely controlling their atomic structure. Here, we address excitation in GNRs with periodic structural wiggles, the so-called chevron GNRs. Based on reflectance difference and high-resolution electron energy loss spectroscopies together with ab initio simulations, we demonstrate that their excited-state properties are of excitonic nature. The spectral fingerprints corresponding to different reaction stages in their bottom-up fabrication are also unequivocally identified, allowing us to follow the exciton build-up from the starting monomer precursor to the final GNR structure.

14.
J Phys Chem C Nanomater Interfaces ; 119(42): 24174-24181, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26523159

RESUMO

Photoelectron emission microscopy (PEEM) and differential (optical) reflectance spectroscopy (DRS) have proven independently to be versatile analytical tools for monitoring the evolution of organic thin films during growth. In this paper, we present the first experiment in which both techniques have been applied simultaneously and synchronously. We illustrate how the combined PEEM and DRS results can be correlated to obtain an extended perspective on the electronic and optical properties of a molecular film dependent on the film thickness and morphology. As an example, we studied the deposition of the organic molecule α-sexithiophene on Ag(111) in the thickness range from submonolayers up to several monolayers.

15.
Ultramicroscopy ; 159 Pt 3: 464-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26150140

RESUMO

In this study, we used photo electron emission microscopy (PEEM) to investigate the growth of α-sexithiophene (α-6 T) on Ag(111) surfaces. The experiments were carried out with linearly polarized ultraviolet-light (Hg lamp with hν=4.9 eV) in order to probe the alignment of the molecules on the surface. In particular, we acquired images before, during, and after growth while changing the polarization in a stepwise manner. For the stationary states of the clean and the α-6 T covered surfaces, we monitored the local electron yield and the intensity of the ultraviolet C-light (100-280 nm) reflected from the whole sample using PEEM and a photodiode, respectively. Due to the high ionization potential (IP>5 eV), there is no direct photoelectron emission from the organic crystallites. However, the photoelectron emission of the metal/organic interface is influenced by anisotropic absorption of the incident light beam, since the adsorbed molecules act as dichroic filters with distinct orientations.

16.
J Phys Chem C Nanomater Interfaces ; 118(20): 10911-10920, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24883168

RESUMO

Quinacridone (QA) has recently gained attention as an organic semiconductor with unexpectedly high performance in organic devices. The strong intermolecular connection via hydrogen bonds is expected to promote good structural order. When deposited on a substrate, another relevant factor comes into play, namely the 2D-chirality of the quinacridone molecules adsorbed on a surface. Scanning tunneling microscopy (STM) images of monolayer quinacridone on Ag(111) deposited at room temperature reveal the formation of quasi-one-dimensional rows of parallel quinacridone molecules. These rows are segmented into short stacks of a few molecules in which adjacent, flat-lying molecules of a single handedness are linked via hydrogen bonds. After annealing to a temperature of T = 550-570 K, which is close to the sublimation temperature of bulk quinacridone, the structure changes into a stacking of heterochiral quinacridone dimers with a markedly different intermolecular arrangement. Electron diffraction (LEED) and photoelectron emission microscopy (PEEM) data corroborate the STM findings. These results illustrate how the effects of hydrogen bonding and chirality can compete and give rise to very different (meta)stable structures of quinacridone on surfaces.

17.
Nat Commun ; 5: 4253, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25001405

RESUMO

Narrow graphene nanoribbons exhibit substantial electronic bandgaps and optical properties fundamentally different from those of graphene. Unlike graphene--which shows a wavelength-independent absorbance for visible light--the electronic bandgap, and therefore the optical response, of graphene nanoribbons changes with ribbon width. Here we report on the optical properties of armchair graphene nanoribbons of width N=7 grown on metal surfaces. Reflectance difference spectroscopy in combination with ab initio calculations show that ultranarrow graphene nanoribbons have fully anisotropic optical properties dominated by excitonic effects that sensitively depend on the exact atomic structure. For N=7 armchair graphene nanoribbons, the optical response is dominated by absorption features at 2.1, 2.3 and 4.2 eV, in excellent agreement with ab initio calculations, which also reveal an absorbance of more than twice the one of graphene for linearly polarized light in the visible range of wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA