Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Immunity ; 54(11): 2611-2631.e8, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758338

RESUMO

Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.


Assuntos
Hipocampo/metabolismo , Interleucina-6/biossíntese , Exposição Materna , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipocampo/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Gravidez , Transdução de Sinais , Transmissão Sináptica
2.
Immunity ; 48(5): 979-991.e8, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752066

RESUMO

The triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial innate immune receptor associated with a lethal form of early, progressive dementia, Nasu-Hakola disease, and with an increased risk of Alzheimer's disease. Microglial defects in phagocytosis of toxic aggregates or apoptotic membranes were proposed to be at the origin of the pathological processes in the presence of Trem2 inactivating mutations. Here, we show that TREM2 is essential for microglia-mediated synaptic refinement during the early stages of brain development. The absence of Trem2 resulted in impaired synapse elimination, accompanied by enhanced excitatory neurotransmission and reduced long-range functional connectivity. Trem2-/- mice displayed repetitive behavior and altered sociability. TREM2 protein levels were also negatively correlated with the severity of symptoms in humans affected by autism. These data unveil the role of TREM2 in neuronal circuit sculpting and provide the evidence for the receptor's involvement in neurodevelopmental diseases.


Assuntos
Encéfalo/imunologia , Glicoproteínas de Membrana/imunologia , Microglia/imunologia , Neurônios/imunologia , Receptores Imunológicos/imunologia , Sinapses/imunologia , Animais , Transtorno Autístico/genética , Transtorno Autístico/imunologia , Transtorno Autístico/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Microglia/metabolismo , Neurônios/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/genética , Transmissão Sináptica/imunologia
3.
Mol Psychiatry ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737483

RESUMO

Functional and structural connectivity alterations in short- and long-range projections have been reported across neurodevelopmental disorders (NDD). Interhemispheric callosal projection neurons (CPN) represent one of the major long-range projections in the brain, which are particularly important for higher-order cognitive function and flexibility. However, whether a causal relationship exists between interhemispheric connectivity alterations and cognitive deficits in NDD remains elusive. Here, we focused on CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental disorder caused by mutations in the X-linked Cyclin-dependent kinase-like 5 (CDKL5) gene. We found an increase in homotopic interhemispheric connectivity and functional hyperconnectivity across higher cognitive areas in adult male and female CDKL5-deficient mice by resting-state functional MRI (rs-fMRI) analysis. This was accompanied by an increase in the number of callosal synaptic inputs but decrease in local synaptic connectivity in the cingulate cortex of juvenile CDKL5-deficient mice, suggesting an impairment in excitatory synapse development and a differential role of CDKL5 across excitatory neuron subtypes. These deficits were associated with significant cognitive impairments in CDKL5 KO mice. Selective deletion of CDKL5 in the largest subtype of CPN likewise resulted in an increase of functional callosal inputs, without however significantly altering intracortical cingulate networks. Notably, such callosal-specific changes were sufficient to cause cognitive deficits. Finally, when CDKL5 was selectively re-expressed only in this CPN subtype, in otherwise CDKL5-deficient mice, it was sufficient to prevent the cognitive impairments of CDKL5 mutants. Together, these results reveal a novel role of CDKL5 by demonstrating that it is both necessary and sufficient for proper CPN connectivity and cognitive function and flexibility, and further validates a causal relationship between CPN dysfunction and cognitive impairment in a model of NDD.

4.
Neuroimage ; 253: 119082, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35278707

RESUMO

The hippocampus plays a central role in supporting our coherent and enduring sense of self and our place in the world. Understanding its functional organisation is central to understanding this complex role. Previous studies suggest function varies along a long hippocampal axis, but there is disagreement about the presence of sharp discontinuities or gradual change along that axis. Other open questions relate to the underlying drivers of this variation and the conservation of organisational principles across species. Here, we delineate the primary organisational principles underlying patterns of hippocampal functional connectivity (FC) in the mouse using gradient analysis on resting state fMRI data. We further applied gradient analysis to mouse gene co-expression data to examine the relationship between variation in genomic anatomy and functional organisation. Two principal FC gradients along a hippocampal axis were revealed. The principal gradient exhibited a sharp discontinuity that divided the hippocampus into dorsal and ventral compartments. The second, more continuous, gradient followed the long axis of the ventral compartment. Dorsal regions were more strongly connected to areas involved in spatial navigation while ventral regions were more strongly connected to areas involved in emotion, recapitulating patterns seen in humans. In contrast, gene co-expression gradients showed a more segregated and discrete organisation. Our findings suggest that hippocampal functional organisation exhibits both sharp and gradual transitions and that hippocampal genomic anatomy exerts only a subtle influence on this organisation.


Assuntos
Roedores , Navegação Espacial , Animais , Emoções , Hipocampo/anatomia & histologia , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Camundongos
5.
Proc Natl Acad Sci U S A ; 116(10): 4689-4695, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782826

RESUMO

The primate cerebral cortex displays a hierarchy that extends from primary sensorimotor to association areas, supporting increasingly integrated function underpinned by a gradient of heterogeneity in the brain's microcircuits. The extent to which these hierarchical gradients are unique to primate or may reflect a conserved mammalian principle of brain organization remains unknown. Here we report the topographic similarity of large-scale gradients in cytoarchitecture, gene expression, interneuron cell densities, and long-range axonal connectivity, which vary from primary sensory to prefrontal areas of mouse cortex, highlighting an underappreciated spatial dimension of mouse cortical specialization. Using the T1-weighted:T2-weighted (T1w:T2w) magnetic resonance imaging map as a common spatial reference for comparison across species, we report interspecies agreement in a range of large-scale cortical gradients, including a significant correspondence between gene transcriptional maps in mouse cortex with their human orthologs in human cortex, as well as notable interspecies differences. Our results support the view of systematic structural variation across cortical areas as a core organizational principle that may underlie hierarchical specialization in mammalian brains.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Proteínas/genética , Animais , Mapeamento Encefálico , Córtex Cerebral/metabolismo , Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Camundongos , Proteínas/metabolismo , Transcrição Gênica
6.
Neuroimage ; 241: 118386, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280528

RESUMO

The reliability of scientific results critically depends on reproducible and transparent data processing. Cross-subject and cross-study comparability of imaging data in general, and magnetic resonance imaging (MRI) data in particular, is contingent on the quality of registration to a standard reference space. In small animal MRI this is not adequately provided by currently used processing workflows, which utilize high-level scripts optimized for human data, and adapt animal data to fit the scripts, rather than vice-versa. In this fully reproducible article we showcase a generic workflow optimized for the mouse brain, alongside a standard reference space suited to harmonize data between analysis and operation. We introduce four separate metrics for automated quality control (QC), and a visualization method to aid operator inspection. Benchmarking this workflow against common legacy practices reveals that it performs more consistently, better preserves variance across subjects while minimizing variance across sessions, and improves both volume and smoothness conservation RMSE approximately 2-fold. We propose this open source workflow and the QC metrics as a new standard for small animal MRI registration, ensuring workflow robustness, data comparability, and region assignment validity, all of which are indispensable prerequisites for the comparability of scientific results across experiments and centers.


Assuntos
Mapeamento Encefálico/métodos , Mapeamento Encefálico/normas , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Fluxo de Trabalho , Animais , Bases de Dados Factuais/normas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimagem/métodos , Neuroimagem/normas
7.
Neuroimage ; 228: 117685, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359344

RESUMO

Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.


Assuntos
Anatomia Comparada/tendências , Evolução Biológica , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Neuroimagem/tendências , Anatomia Comparada/métodos , Animais , Humanos , Neuroimagem/métodos , Primatas
8.
Cereb Cortex ; 30(9): 4922-4937, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32313923

RESUMO

Abnormal brain development manifests itself at different spatial scales. However, whether abnormalities at the cellular level can be diagnosed from network activity measured with functional magnetic resonance imaging (fMRI) is largely unknown, yet of high clinical relevance. Here a putative mechanism reported in neurodevelopmental disorders, that is, excitation-to-inhibition ratio (E:I), was chemogenetically increased within cortical microcircuits of the mouse brain and measured via fMRI. Increased E:I caused a significant "reduction" of long-range connectivity, irrespective of whether excitatory neurons were facilitated or inhibitory Parvalbumin (PV) interneurons were suppressed. Training a classifier on fMRI signals, we were able to accurately classify cortical areas exhibiting increased E:I. This classifier was validated in an independent cohort of Fmr1y/- knockout mice, a model for autism with well-documented loss of parvalbumin neurons and chronic alterations of E:I. Our findings demonstrate a promising novel approach towards inferring microcircuit abnormalities from macroscopic fMRI measurements.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Neurônios/fisiologia , Animais , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/fisiologia
9.
J Neurosci ; 39(8): 1525-1538, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30593497

RESUMO

Overreactivity and defensive behaviors in response to tactile stimuli are common symptoms in autism spectrum disorder (ASD) patients. Similarly, somatosensory hypersensitivity has also been described in mice lacking ASD-associated genes such as Fmr1 (fragile X mental retardation protein 1). Fmr1 knock-out mice also show reduced functional connectivity between sensory cortical areas, which may represent an endogenous biomarker for their hypersensitivity. Here, we measured whole-brain functional connectivity in Engrailed-2 knock-out (En2-/-) adult mice, which show a lower expression of Fmr1 and anatomical defects common to Fmr1 knock-outs. MRI-based resting-state functional connectivity in adult En2-/- mice revealed significantly reduced synchronization in somatosensory-auditory/associative cortices and dorsal thalamus, suggesting the presence of aberrant somatosensory processing in these mutants. Accordingly, when tested in the whisker nuisance test, En2-/- but not WT mice of both sexes showed fear behavior in response to repeated whisker stimulation. En2-/- mice undergoing this test exhibited decreased c-Fos-positive neurons (a marker of neuronal activity) in layer IV of the primary somatosensory cortex and increased immunoreactive cells in the basolateral amygdala compared with WT littermates. Conversely, when tested in a sensory maze, En2-/- and WT mice spent a comparable time in whisker-guided exploration, indicating that whisker-mediated behaviors are otherwise preserved in En2 mutants. Therefore, fearful responses to somatosensory stimuli in En2-/- mice are accompanied by reduced basal connectivity of sensory regions, reduced activation of somatosensory cortex, and increased activation of the basolateral amygdala, suggesting that impaired somatosensory processing is a common feature in mice lacking ASD-related genes.SIGNIFICANCE STATEMENT Overreactivity to tactile stimuli is a common symptom in autism spectrum disorder (ASD) patients. Recent studies performed in mice bearing ASD-related mutations confirmed these findings. Here, we evaluated the behavioral response to whisker stimulation in mice lacking the ASD-related gene Engrailed-2 (En2-/- mice). Compared with WT controls, En2-/- mice showed reduced functional connectivity in the somatosensory cortex, which was paralleled by fear behavior, reduced activation of somatosensory cortex, and increased activation of the basolateral amygdala in response to repeated whisker stimulation. These results suggest that impaired somatosensory signal processing is a common feature in mice harboring ASD-related mutations.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Medo/fisiologia , Proteínas do Tecido Nervoso/deficiência , Córtex Somatossensorial/fisiopatologia , Vibrissas/fisiologia , Animais , Transtorno do Espectro Autista/psicologia , Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Complexo Nuclear Basolateral da Amígdala/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Conectoma , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Proteínas Proto-Oncogênicas c-fos/análise , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/patologia , Tálamo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
10.
Neuroimage ; 205: 116278, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31614221

RESUMO

Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Conectoma/normas , Feminino , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes
11.
Neuroimage ; 191: 392-402, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807820

RESUMO

Previous work has demonstrated that neuroimaging biomarkers which capture functional connectivity of the brain can be used to define a specific and robust endophenotype in Fmr1-/y mice, a well-established animal model of human Fragile-X Syndrome (FXS). However, it is currently unknown whether this macroscopic measure of brain connectivity is sufficiently sensitive to reliably detect changes caused by pharmacological interventions. Here we inhibited the activity of the metabotropic glutamate receptor-5 (mGluR5) using AFQ056/Mavoglurant, a drug that is assumed to normalize excitatory/inhibitory neural signaling imbalances in FXS. We employed resting-state-fMRI (rs-fMRI) and diffusion-weighted imaging (DWI) to test whether Mavoglurant re-established brain connectivity - at least partly - within some of the affected circuits in Fmr1-/y mice that are related to social behavior deficits. In line with previous findings, we observed that Fmr1-/y mice exhibited impaired social interaction, reduced connectivity in three main functional networks and altered network topology. At the group level, Mavoglurant did neither rescue abnormal social behavioral nor white matter abnormalities; however, for some, but not all of these circuits Mavoglurant had a genotype-specific effect of restoring functional connectivity. These results show that rs-fMRI connectivity is sufficiently sensitive to pick up system-level changes after the pharmacological inhibition of mGluR5 activity. However, our results also show that the effects of Mavoglurant are confined to specific networks suggesting that behavioral benefits might be restricted to narrow functional domains.


Assuntos
Encéfalo/efeitos dos fármacos , Indóis/farmacologia , Vias Neurais/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Neuroimagem/métodos
12.
Cereb Cortex ; 28(7): 2495-2506, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29901787

RESUMO

Autism spectrum disorders (ASD) are a set of complex neurodevelopmental disorders for which there is currently no targeted therapeutic approach. It is thought that alterations of genes regulating migration and synapse formation during development affect neural circuit formation and result in aberrant connectivity within distinct circuits that underlie abnormal behaviors. However, it is unknown whether deviant developmental trajectories are circuit-specific for a given autism risk-gene. We used MRI to probe changes in functional and structural connectivity from childhood to adulthood in Fragile-X (Fmr1-/y) and contactin-associated (CNTNAP2-/-) knockout mice. Young Fmr1-/y mice (30 days postnatal) presented with a robust hypoconnectivity phenotype in corticocortico and corticostriatal circuits in areas associated with sensory information processing, which was maintained until adulthood. Conversely, only small differences in hippocampal and striatal areas were present during early postnatal development in CNTNAP2-/- mice, while major connectivity deficits in prefrontal and limbic pathways developed between adolescence and adulthood. These findings are supported by viral tracing and electron micrograph approaches and define 2 clearly distinct connectivity endophenotypes within the autism spectrum. We conclude that the genetic background of ASD strongly influences which circuits are most affected, the nature of the phenotype, and the developmental time course of the associated changes.


Assuntos
Transtorno Autístico , Encéfalo/crescimento & desenvolvimento , Proteína do X Frágil da Deficiência Intelectual/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Transtorno Autístico/complicações , Transtorno Autístico/genética , Transtorno Autístico/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Mapeamento Encefálico , Conectoma , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Processamento de Imagem Assistida por Computador , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imageamento por Ressonância Magnética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Transdução Genética , Proteína Vermelha Fluorescente
13.
J Neurosci ; 37(34): 8092-8101, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28716961

RESUMO

Translational neuroimaging requires approaches and techniques that can bridge between multiple different species and disease states. One candidate method that offers insights into the brain's functional connectivity (FC) is resting-state fMRI (rs-fMRI). In both humans and nonhuman primates, patterns of FC (often referred to as the functional connectome) have been related to the underlying structural connectivity (SC; also called the structural connectome). Given the recent rise in preclinical neuroimaging of mouse models, it is an important question whether the mouse functional connectome conforms to the underlying SC. Here, we compared FC derived from rs-fMRI in female mice with the underlying monosynaptic structural connectome as provided by the Allen Brain Connectivity Atlas. We show that FC between interhemispheric homotopic cortical and hippocampal areas, as well as in cortico-striatal pathways, emerges primarily via monosynaptic structural connections. In particular, we demonstrate that the striatum (STR) can be segregated according to differential rs-fMRI connectivity patterns that mirror monosynaptic connectivity with isocortex. In contrast, for certain subcortical networks, FC emerges along polysynaptic pathways as shown for left and right STR, which do not share direct anatomical connections, but high FC is putatively driven by a top-down cortical control. Finally, we show that FC involving cortico-thalamic pathways is limited, possibly confounded by the effect of anesthesia, small regional size, and tracer injection volume. These findings provide a critical foundation for using rs-fMRI connectivity as a translational tool to study complex brain circuitry interactions and their pathology due to neurological or psychiatric diseases across species.SIGNIFICANCE STATEMENT A comprehensive understanding of how the anatomical architecture of the brain, often referred to as the "connectome," corresponds to its function is arguably one of the biggest challenges for understanding the brain and its pathologies. Here, we use the mouse as a model for comparing functional connectivity (FC) derived from resting-state fMRI with gold standard structural connectivity measures based on tracer injections. In particular, we demonstrate high correspondence between FC measurements of cortico-cortical and cortico-striatal regions and their anatomical underpinnings. This work provides a critical foundation for studying the pathology of these circuits across mouse models and human patients.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
14.
J Neurosci ; 37(18): 4766-4777, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28385876

RESUMO

Resting state fMRI (rs-fMRI) is commonly used to study the brain's intrinsic neural coupling, which reveals specific spatiotemporal patterns in the form of resting state networks (RSNs). It has been hypothesized that slow rs-fMRI oscillations (<0.1 Hz) are driven by underlying electrophysiological rhythms that typically occur at much faster timescales (>5 Hz); however, causal evidence for this relationship is currently lacking. Here we measured rs-fMRI in humans while applying transcranial alternating current stimulation (tACS) to entrain brain rhythms in left and right sensorimotor cortices. The two driving tACS signals were tailored to the individual's α rhythm (8-12 Hz) and fluctuated in amplitude according to a 1 Hz power envelope. We entrained the left versus right hemisphere in accordance to two different coupling modes where either α oscillations were synchronized between hemispheres (phase-synchronized tACS) or the slower oscillating power envelopes (power-synchronized tACS). Power-synchronized tACS significantly increased rs-fMRI connectivity within the stimulated RSN compared with phase-synchronized or no tACS. This effect outlasted the stimulation period and tended to be more effective in individuals who exhibited a naturally weak interhemispheric coupling. Using this novel approach, our data provide causal evidence that synchronized power fluctuations contribute to the formation of fMRI-based RSNs. Moreover, our findings demonstrate that the brain's intrinsic coupling at rest can be selectively modulated by choosing appropriate tACS signals, which could lead to new interventions for patients with altered rs-fMRI connectivity.SIGNIFICANCE STATEMENT Resting state fMRI (rs-fMRI) has become an important tool to estimate brain connectivity. However, relatively little is known about how slow hemodynamic oscillations measured with fMRI relate to electrophysiological processes. It was suggested that slowly fluctuating power envelopes of electrophysiological signals synchronize across brain areas and that the topography of this activity is spatially correlated to resting state networks derived from rs-fMRI. Here we take a novel approach to address this problem and establish a causal link between the power fluctuations of electrophysiological signals and rs-fMRI via a new neuromodulation paradigm, which exploits these power synchronization mechanisms. These novel mechanistic insights bridge different scientific domains and are of broad interest to researchers in the fields of Medical Imaging, Neuroscience, Physiology, and Psychology.


Assuntos
Sincronização Cortical/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Descanso/fisiologia , Córtex Sensório-Motor/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos , Mapeamento Encefálico/métodos , Feminino , Humanos , Vias Neurais/fisiologia , Adulto Jovem
15.
Neuroimage ; 175: 340-353, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625233

RESUMO

There are a growing number of neuroimaging methods that model spatio-temporal patterns of brain activity to allow more meaningful characterizations of brain networks. This paper proposes dynamic graphical models (DGMs) for dynamic, directed functional connectivity. DGMs are a multivariate graphical model with time-varying coefficients that describe instantaneous directed relationships between nodes. A further benefit of DGMs is that networks may contain loops and that large networks can be estimated. We use network simulations and human resting-state fMRI (N = 500) to investigate the validity and reliability of the estimated networks. We simulate systematic lags of the hemodynamic response at different brain regions to investigate how these lags potentially bias directionality estimates. In the presence of such lag confounds (0.4-0.8 s offset between connected nodes), our method has a sensitivity of 72%-77% to detect the true direction. Stronger lag confounds have reduced sensitivity, but do not increase false positives (i.e., directionality estimates of the opposite direction). In human resting-state fMRI, the default mode network has consistent influence on the cerebellar, the limbic and the auditory/temporal networks. We also show a consistent reciprocal relationship between the visual medial and visual lateral network. Finally, we apply the method in a small mouse fMRI sample and discover a highly plausible relationship between areas in the hippocampus feeding into the cingulate cortex. We provide a computationally efficient implementation of DGM as a free software package for R.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Rede Nervosa/diagnóstico por imagem , Acoplamento Neurovascular/fisiologia , Adulto , Animais , Encéfalo/irrigação sanguínea , Simulação por Computador , Humanos , Camundongos
16.
Chaos ; 27(4): 047405, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456172

RESUMO

Brain dynamics are thought to unfold on a network determined by the pattern of axonal connections linking pairs of neuronal elements; the so-called connectome. Prior work has indicated that structural brain connectivity constrains pairwise correlations of brain dynamics ("functional connectivity"), but it is not known whether inter-regional axonal connectivity is related to the intrinsic dynamics of individual brain areas. Here we investigate this relationship using a weighted, directed mesoscale mouse connectome from the Allen Mouse Brain Connectivity Atlas and resting state functional MRI (rs-fMRI) time-series data measured in 184 brain regions in eighteen anesthetized mice. For each brain region, we measured degree, betweenness, and clustering coefficient from weighted and unweighted, and directed and undirected versions of the connectome. We then characterized the univariate rs-fMRI dynamics in each brain region by computing 6930 time-series properties using the time-series analysis toolbox, hctsa. After correcting for regional volume variations, strong and robust correlations between structural connectivity properties and rs-fMRI dynamics were found only when edge weights were accounted for, and were associated with variations in the autocorrelation properties of the rs-fMRI signal. The strongest relationships were found for weighted in-degree, which was positively correlated to the autocorrelation of fMRI time series at time lag τ = 34 s (partial Spearman correlation ρ=0.58), as well as a range of related measures such as relative high frequency power (f > 0.4 Hz: ρ=-0.43). Our results indicate that the topology of inter-regional axonal connections of the mouse brain is closely related to intrinsic, spontaneous dynamics such that regions with a greater aggregate strength of incoming projections display longer timescales of activity fluctuations.


Assuntos
Encéfalo/metabolismo , Conectoma , Oxigênio/sangue , Animais , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Descanso , Processamento de Sinais Assistido por Computador , Fatores de Tempo
17.
Neural Plast ; 2016: 6846721, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27034849

RESUMO

APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10-12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16-18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging.


Assuntos
Envelhecimento , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/fisiopatologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Doença de Alzheimer/genética , Animais , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Encéfalo/metabolismo , Mapeamento Encefálico , Dieta , Proteína 4 Homóloga a Disks-Large , Ácidos Graxos/metabolismo , Feminino , Guanilato Quinases/metabolismo , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/irrigação sanguínea , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Esteróis/sangue
18.
J Neurosci ; 34(42): 13963-75, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25319693

RESUMO

It is well established that the cholesterol-transporter apolipoprotein ε (APOE) genotype is associated with the risk of developing neurodegenerative diseases. Recently, brain functional connectivity (FC) in apoE-ε4 carriers has been investigated by means of resting-state fMRI, showing a marked differentiation in several functional networks at different ages compared with carriers of other apoE isoforms. The causes of such hampered FC are not understood. We hypothesize that vascular function and synaptic repair processes, which are both impaired in carriers of ε4, are the major contributors to the loss of FC during aging. To test this hypothesis, we integrated several different MRI techniques with immunohistochemistry and investigated FC changes in relation with perfusion, diffusion, and synaptic density in apoE4 and apoE-knock-out (KO) mice at 12 (adult) and 18 months of age. Compared with wild-type mice, we detected FC deficits in both adult and old apoE4 and apoE-KO mice. In apoE4 mice, these changes occurred concomitant with increased mean diffusivity in the hippocampus, whereas perfusion deficits appear only later in life, together with reduced postsynaptic density levels. Instead, in apoE-KO mice FC deficits were mirrored by strongly reduced brain perfusion since adulthood. In conclusion, we provide new evidence for a relation between apoE and brain connectivity, possibly mediated by vascular risk factors and by the efficiency of APOE as synaptic modulator in the brain. Our results show that multimodal MR neuroimaging is an excellent tool to assess brain function and to investigate early neuropathology and aging effects in translational research.


Assuntos
Envelhecimento/metabolismo , Apolipoproteína E4/deficiência , Encéfalo/metabolismo , Rede Nervosa/metabolismo , Descanso/fisiologia , Envelhecimento/patologia , Animais , Apolipoproteínas E/deficiência , Encéfalo/patologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Rede Nervosa/patologia
19.
Neuroimage ; 123: 11-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26296501

RESUMO

The use of resting state fMRI (rs-fMRI) in translational research is a powerful tool to assess brain connectivity and investigate neuropathology in mouse models. However, despite encouraging initial results, the characterization of consistent and robust resting state networks in mice remains a methodological challenge. One key reason is that the quality of the measured MR signal is degraded by the presence of structural noise from non-neural sources. Notably, in the current pipeline of the Human Connectome Project, a novel approach has been introduced to clean rs-fMRI data, which involves automatic artifact component classification and data cleaning (FIX). FIX does not require any external recordings of physiology or the segmentation of CSF and white matter. In this study, we evaluated the performance of FIX for analyzing mouse rs-fMRI data. Our results showed that FIX can be easily applied to mouse datasets and detects true signals with 100% accuracy and true noise components with very high accuracy (>98%), thus reducing both within- and between-subject variability of rs-fMRI connectivity measurements. Using this improved pre-processing pipeline, maps of 23 resting state circuits in mice were identified including two networks that displayed default mode network-like topography. Hierarchical clustering grouped these neural networks into meaningful larger functional circuits. These mouse resting state networks, which are publicly available, might serve as a reference for future work using mouse models of neurological disorders.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Animais , Análise por Conglomerados , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia
20.
Cell Rep ; 43(5): 114191, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38717901

RESUMO

While humans are known to have several premotor cortical areas, secondary motor cortex (M2) is often considered to be the only higher-order motor area of the mouse brain and is thought to combine properties of various human premotor cortices. Here, we show that axonal tracer, functional connectivity, myelin mapping, gene expression, and optogenetics data contradict this notion. Our analyses reveal three premotor areas in the mouse, anterior-lateral motor cortex (ALM), anterior-lateral M2 (aM2), and posterior-medial M2 (pM2), with distinct structural, functional, and behavioral properties. By using the same techniques across mice and humans, we show that ALM has strikingly similar functional and microstructural properties to human anterior ventral premotor areas and that aM2 and pM2 amalgamate properties of human pre-SMA and cingulate cortex. These results provide evidence for the existence of multiple premotor areas in the mouse and chart a comparative map between the motor systems of humans and mice.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Animais , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Adulto , Feminino , Mapeamento Encefálico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA