Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177458

RESUMO

In this paper, a compact dual-wideband fractal antenna is created for Bluetooth, WiMAX, WLAN, C, and X band applications. The proposed antenna consists of a circularly shaped resonator that contains square slots and a ground plane where a gap line is incorporated to increase the gain and bandwidth with a small volume of 40 × 34 × 1.6 mm3. The patch was supported by the FR4 dielectric, which had a permittivity of 4.4 and tan δ = 0.02. A 50 Ω microstrip line fed this antenna. The antenna was designed by the HFSS program, and after that, the simulated results were validated using the measured results. The measurement results confirm that the suggested antenna achieves dual-band frequencies ranging from 2.30 to 4.10 GHz, and from 6.10 GHz to 10.0 GHz, resonating at 2.8, 3.51, 6.53, and 9.37 GHz, respectively, for various applications including commercial, scholarly, and medical applications. Moreover, the antenna's ability to operate within the frequency range of 3.1-10.6 GHz is in accordance with the FCC guidelines for the use of UWB antennas in breast cancer detection. Over the operational bands, the gain varied between 2 and 9 dB, and an efficiency of 92% was attained. A good agreement between the simulation and the measured results was found.

2.
Materials (Basel) ; 16(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36837126

RESUMO

In this paper, a wideband antenna is proposed for ultra-wideband microwave imaging applications. The antenna is comprised of a tapered slot ground, a rectangular slotted patch and four star-shaped parasitic components. The added slotted patch is shown to be effective in improving the bandwidth and gain. The proposed antenna system provides a realized gain of 6 dBi, an efficiency of around 80% on the radiation bandwidth, and a wide impedance bandwidth (S11 < -10 dB) of 6.3 GHz (from 3.8 to 10.1 GHz). This supports a true wideband operation. Furthermore, the fidelity factor for face-to-face (FtF) direction is 91.6%, and for side by side (SbS) is 91.2%. This proves the excellent directionality and less signal distortion of the designed antenna. These high figures establish the potential use of the proposed antenna for imaging. A heterogeneous breast phantom with dielectric characteristics identical to actual breast tissue with the presence of tumors was constructed for experimental validation. An antenna array of the proposed antenna element was situated over an artificial breast to collect reflected and transmitted waves for tumor characterization. Finally, an imaging algorithm was used to process the retrieved data to recreate the image in order to detect the undesirable tumor object inside the breast phantom.

3.
Med Eng Phys ; 99: 103737, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35058030

RESUMO

In this work, a small multilayer ultra-wideband (UWB) patch antenna for microwave breast imaging (MWI) applications was developed both theoretically and experimentally. However, to improve the antenna performance relating to the bandwidth (BW), the radiating element of the suggested initial antenna is modified by adding a modified split ring resonator (SRR) and slits in the patch as well as the ground plane. Then, to achieve the requisite antenna properties for MWI applications such as the gain and directivity, the antenna is equipped with a uniplanar artificial magnetic conductor (AMC) structure made up of a 3 × 3 array of square modified SRR unit cells. The final proposed prototype has a relatively small size of 20 × 19 × 1.6 mm3 and it accomplishes a return loss below -10 dB (S11< -10 dB) at overall BW of 7 GHz (4.1 - 9.7 GHz) with more than 5 dBi realized gain. In this way, the characteristics of the fabricated antenna are measured to examine the antenna performance. Indeed, the fidelity factor of face-to-face (FtF) and side-by-side (SbS) scenarios are also noticed for the same frequency range. In the final analysis, a simulation model of the antennas, which operate as a transceiver, and a breast phantom model with tumor sample are proposed for detecting cancerous tumor cells within the breast. Hence, the proposed design is suitable in the biomedical applications such as tumor cell detection.


Assuntos
Neoplasias da Mama , Imageamento de Micro-Ondas , Neoplasias da Mama/diagnóstico por imagem , Simulação por Computador , Diagnóstico por Imagem , Feminino , Humanos , Micro-Ondas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA