Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 35(5): e21598, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33871068

RESUMO

Fibrillin-1 is an extracellular matrix protein which contains one conserved RGD integrin-binding motif. It constitutes the backbone of microfibrils in many tissues, and mutations in fibrillin-1 cause various connective tissue disorders. Although it is well established that fibrillin-1 interacts with several RGD-dependent integrins, very little is known about the associated intracellular signaling pathways. Recent published evidence identified a subset of miRNAs regulated by fibrillin-1 RGD-cell adhesion, with miR-1208 among the most downregulated. The present study shows that the downregulated miR-1208 controls fibroblast proliferation. Inhibitor experiments revealed that fibrillin-1 RGD suppressed miR-1208 expression via c-Src kinase and the downstream JNK signaling. Bioinformatic prediction and experimental target sequence validation demonstrated four miR-1208 binding sites on the ERK2 mRNA and one on the MEK1 mRNA. ERK2 and MEK1 are critical proliferation-promoting kinases. Decreased miR-1208 levels elevated the total and phosphorylated ERK1/2 and MEK1/2 protein levels and the phosphorylated to total ERK1/2 ratio. Together, the data demonstrate a novel outside-in signaling mechanism explaining how fibrillin-1 RGD-cell binding regulates fibroblast proliferation.


Assuntos
Fibrilina-1/metabolismo , Fibroblastos/citologia , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Oligopeptídeos/metabolismo , Processamento Pós-Transcricional do RNA , Proliferação de Células , Células Cultivadas , Fibrilina-1/genética , Fibroblastos/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oligopeptídeos/genética
2.
J Invest Dermatol ; 144(11): 2477-2487.e13, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38570029

RESUMO

Fibronectin serves as a platform to guide and facilitate deposition of collagen and fibrillin microfibrils. During development of fibrotic diseases, altered fibronectin deposition in the extracellular matrix (ECM) is generally an early event. After this, dysregulated organization of fibrillins and fibrillar collagens occurs. Because fibronectin is an essential orchestrator of healthy ECM, perturbation of its ECM-organizational capacity may be involved in development of fibrosis. To investigate this, we employed recessive dystrophic epidermolysis bullosa as a disease model with progressive, severe dermal fibrosis. Fibroblasts from donors with recessive dystrophic epidermolysis bullosa in 2-dimensional and 3-dimensional cultures displayed dysregulated fibronectin deposition. Our analyses revealed that increase of profibrotic dipeptidyl peptidase-4-positive fibroblasts coincides with altered fibronectin deposition. Dipeptidyl peptidase-4 inhibitors normalized deposition of fibronectin and subsequently of fibrillin microfibrils and collagen I. Intriguingly, proteomics and inhibitor and mutagenesis studies disclosed that dipeptidyl peptidase-4 modulates ECM deposition through the proteolysis of the fibronectin N-terminus. Our study provides mechanistic insights into the observed profibrotic activities of dipeptidyl peptidase-4 and extends the understanding of fibronectin-guided ECM assembly in health and disease.


Assuntos
Dipeptidil Peptidase 4 , Epidermólise Bolhosa Distrófica , Matriz Extracelular , Fibroblastos , Fibronectinas , Fibrose , Fibronectinas/metabolismo , Humanos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Epidermólise Bolhosa Distrófica/genética , Células Cultivadas , Inibidores da Dipeptidil Peptidase IV/farmacologia , Pele/patologia , Pele/metabolismo
3.
J Mol Biol ; 431(2): 401-421, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30500337

RESUMO

Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. Fibrillin-1 contains one evolutionarily conserved RGD sequence that mediates cell-matrix interactions through cell-surface integrins. Here, we present a novel paradigm how extracellular fibrillin-1 controls cellular function through integrin-mediated microRNA regulation. Comparative mRNA studies by global microarray analysis identified growth factor activity, actin binding and integrin binding as the most important functional groups that are regulated upon fibrillin-1 binding to dermal fibroblasts. Many of these mRNAs are targets of miRNAs that were identified when RNA from the fibrillin-1-ligated fibroblasts was analyzed by a miRNA microarray. The expression profile was specific to fibrillin-1 since interaction with fibronectin displayed a partially distinct profile. The importance of selected miRNAs for the regulation of the identified mRNAs was suggested by bioinformatics prediction and the interactions between miRNAs and mRNAs were experimentally validated. Functionally, we show that miR-503 controls p-Smad2-dependent TGF-ß signaling, and that miR-612 and miR-3185 are involved in the focal adhesion formation regulated by fibrillin-1. In conclusion, we demonstrate that fibrillin-1 interaction with fibroblasts regulates miRNA expression profiles which in turn control critical cell functions.


Assuntos
Sítios de Ligação/genética , Fibrilina-1/genética , Expressão Gênica/genética , Integrinas/genética , MicroRNAs/genética , Adesão Celular/genética , Linhagem Celular , Pré-Escolar , Matriz Extracelular/genética , Fibroblastos/metabolismo , Fibronectinas/genética , Células HEK293 , Humanos , Masculino , Microfibrilas/genética , Proteínas dos Microfilamentos/genética , Ligação Proteica/genética , Proteína Smad2/genética , Fator de Crescimento Transformador beta/genética
4.
J Cell Commun Signal ; 9(4): 309-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26449569

RESUMO

Fibrillins constitute the backbone of microfibrils in the extracellular matrix of elastic and non-elastic tissues. Mutations in fibrillins are associated with a wide range of connective tissue disorders, the most common is Marfan syndrome. Microfibrils are on one hand important for structural stability in some tissues. On the other hand, microfibrils are increasingly recognized as critical mediators and drivers of cellular signaling. This review focuses on the signaling mechanisms initiated by fibrillins and microfibrils, which are often dysregulated in fibrillin-associated disorders. Fibrillins regulate the storage and bioavailability of growth factors of the TGF-ß superfamily. Cells sense microfibrils through integrins and other receptors. Fibrillins potently regulate pathways of the immune response, inflammation and tissue homeostasis. Emerging evidence show the involvement of microRNAs in disorders caused by fibrillin deficiency. A thorough understanding of fibrillin-mediated cell signaling pathways will provide important new leads for therapeutic approaches of the underlying disorders.

5.
Mutat Res Rev Mutat Res ; 765: 7-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26281765

RESUMO

Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1.


Assuntos
Heparina/metabolismo , Síndrome de Marfan/genética , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Mutação Puntual , Animais , Sítios de Ligação , Modelos Animais de Doenças , Fibrilina-1 , Fibrilinas , Humanos , Síndrome de Marfan/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA