Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34502787

RESUMO

The possibility to shape stimulus-responsive optical polymers, especially hydrogels, by means of laser 3D printing and ablation is fostering a new concept of "smart" micro-devices that can be used for imaging, thermal stimulation, energy transducing and sensing. The composition of these polymeric blends is an essential parameter to tune their properties as actuators and/or sensing platforms and to determine the elasto-mechanical characteristics of the printed hydrogel. In light of the increasing demand for micro-devices for nanomedicine and personalized medicine, interest is growing in the combination of composite and hybrid photo-responsive materials and digital micro-/nano-manufacturing. Existing works have exploited multiphoton laser photo-polymerization to obtain fine 3D microstructures in hydrogels in an additive manufacturing approach or exploited laser ablation of preformed hydrogels to carve 3D cavities. Less often, the two approaches have been combined and active nanomaterials have been embedded in the microstructures. The aim of this review is to give a short overview of the most recent and prominent results in the field of multiphoton laser direct writing of biocompatible hydrogels that embed active nanomaterials not interfering with the writing process and endowing the biocompatible microstructures with physically or chemically activable features such as photothermal activity, chemical swelling and chemical sensing.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Lasers , Polímeros , Impressão Tridimensional
2.
Neuropathology ; 39(1): 14-21, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30536911

RESUMO

Multiple sclerosis (MS) is known as the most common demyelinating disease worldwide in which previous studies have shown that stress is a risk factor for the disease's onset and progression. Nevertheless, further studies are needed to investigate the consequences of stress in MS pathology. In this study, after 5 days of exposure to psychological and physical stress as a repetitive distress modality, rats were treated with cuprizone. The demyelination degree was compared in animal groups using Luxol fast blue staining, immunohistochemical staining for myelin basic protein and transmission electron microscopy. Outcomes revealed that animals exposed to stress prior to cuprizone ingestion, elicit more intense demyelination. Continuous psychological distress has more severe effects on myelin sheath destruction in the preclinical stage.


Assuntos
Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/patologia , Bainha de Mielina/ultraestrutura , Estresse Psicológico/complicações , Animais , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/ultraestrutura , Cuprizona/administração & dosagem , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Feminino , Ratos Wistar
3.
Lab Chip ; 22(24): 4917-4932, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382419

RESUMO

The flap of bendable structures under continuous flow impacts a variety of fields, ranging from energy harvesting to active mixing in microfluidic devices. Similar physical principles determine the flapping dynamics in a variety of systems with different sizes, but a thorough investigation of the bending dynamics at the microscale is still lacking. We employ here two-photon laser polymerization to fabricate elongated proteinaceous flexible microstructures directly within a micro-capillary and we characterize their bending dynamics. The elastic properties of the microstructures with different (circular and square) cross-sections are tested by Atomic Force Microscopy and by studying the deflection-flow dependence in microfluidic experiments at intermediate Reynolds numbers (Rey ≲ 150). The retrieved Young's modulus of the fabricated matrix (100 kPa ≤ E ≤ 4 MPa) falls in the range of most typical biological tissues and solely depends on the laser fabrication intensity. The elastic constant of the microstructures falls in the range of 0.8 nN µm-1 ≤ k ≤ 50 nN µm-1, and fully agrees with the macroscopic Euler Bernoulli theory. For soft microstructures (0.8 nN µm-1 ≤ k ≤ 8 nN µm-1) we reveal undamped bending oscillations under continuous microfluidic flow, corresponding to ∼10% of the total structure deflection. This behavior is ascribed to the coupling of the viscoelasticity and non-linear elasticity of the polymer matrix with non-linear dynamics arising from the time-dependent friction coefficient of the bendable microstructures. We envision that similar instabilities may lead to the development of promising energy conversion nanoplatforms.


Assuntos
Microfluídica , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA