Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 23(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35409369

RESUMO

Genomes of all organisms are persistently threatened by endogenous and exogenous assaults. Bacterial mechanisms of genome maintenance must provide protection throughout the physiologically distinct phases of the life cycle. Spore-forming bacteria must also maintain genome integrity within the dormant endospore. The nucleoid-associated proteins (NAPs) influence nucleoid organization and may alter DNA topology to protect DNA or to alter gene expression patterns. NAPs are characteristically multifunctional; nevertheless, Dps, HU and CbpA are most strongly associated with DNA protection. Archaea display great variety in genome organization and many inhabit extreme environments. As of yet, only MC1, an archaeal NAP, has been shown to protect DNA against thermal denaturation and radiolysis. ssDNA are intermediates in vital cellular processes, such as DNA replication and recombination. Single-stranded binding proteins (SSBs) prevent the formation of secondary structures but also protect the hypersensitive ssDNA against chemical and nuclease degradation. Ionizing radiation upregulates SSBs in the extremophile Deinococcus radiodurans.


Assuntos
Proteínas de Ligação a DNA , Deinococcus , Animais , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Estágios do Ciclo de Vida
2.
PLoS Genet ; 11(6): e1005354, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26114960

RESUMO

Colicins are plasmid-encoded narrow spectrum antibiotics that are synthesized by strains of Escherichia coli and govern intraspecies competition. In a previous report, we demonstrated that the global transcriptional factor IscR, co dependently with the master regulator of the DNA damage response, LexA, delays induction of the pore forming colicin genes after SOS induction. Here we show that IscR is not involved in the regulation of nuclease colicins, but that the AsnC protein is. We report that AsnC, in concert with LexA, is the key controller of the temporal induction of the DNA degrading colicin E8 gene (cea8), after DNA damage. We demonstrate that a large AsnC nucleosome-like structure, in conjunction with two LexA molecules, prevent cea8 transcription initiation and that AsnC binding activity is directly modulated by L asparagine. We show that L-asparagine is an environmental factor that has a marked impact on cea8 promoter regulation. Our results show that AsnC also modulates the expression of several other DNase and RNase colicin genes but does not substantially affect pore-forming colicin K gene expression. We propose that selection pressure has "chosen" highly conserved regulators to control colicin expression in E. coli strains, enabling similar colicin gene silencing among bacteria upon exchange of colicinogenic plasmids.


Assuntos
Colicinas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transativadores/genética , Fatores de Transcrição/genética , Asparagina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colicinas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Regiões Promotoras Genéticas , Resposta SOS em Genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
3.
Antonie Van Leeuwenhoek ; 109(4): 523-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26821377

RESUMO

In a genetically uniform bacterial population a small subset of antibiotic-susceptible cells enter an antibiotic tolerant state and are hence referred to as persisters. These have been proposed to be rare phenotypic variants with several stochastically activated independent parallel processes. Here we show an overlooked phenomenon, bacterial tolerance of extraordinary high levels of ampicillin due to encasement of viable cells by an antibiotic induced network of cell debris. This matrix shields the entrapped cells from contact with the bacteriolytic ß-lactam antibiotic ampicillin and may be an underlying cause of notable variations in the level of ampicillin tolerant persisters as well as of considerable medical significance. Disruption of the matrix leads to the rapid elimination of hidden survivors, revealing their metabolically active state.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bacteriólise/efeitos dos fármacos , Ampicilina/farmacologia , Bactérias/crescimento & desenvolvimento , Tolerância a Medicamentos , Escherichia coli/efeitos dos fármacos , Microscopia de Fluorescência
4.
Plasmid ; 82: 28-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26436830

RESUMO

As multidrug resistant bacteria pose one of the greatest risks to human health new alternative antibacterial agents are urgently needed. One possible mechanism that can be used as an alternative to traditional antibiotic therapy is transfer of killing agents via conjugation. Our work was aimed at providing a proof of principle that conjugation-based antimicrobial systems are possible. We constructed a bacterial conjugation-based "kill"-"anti-kill" antimicrobial system employing the well known Escherichia coli probiotic strain Nissle 1917 genetically modified to harbor a conjugative plasmid carrying the "kill" gene (colicin ColE7 activity gene) and a chromosomally encoded "anti-kill" gene (ColE7 immunity gene). The constructed strain acts as a donor in conjugal transfer and its efficiency was tested in several types of conjugal assays. Our results clearly demonstrate that conjugation-based antimicrobial systems can be highly efficient.


Assuntos
Antibacterianos/metabolismo , Colicinas/genética , Conjugação Genética/genética , Escherichia coli/genética , Plasmídeos/genética , Infecções Bacterianas/terapia , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Humanos
5.
Nucleic Acids Res ; 41(21): 9901-10, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23965307

RESUMO

RecA protein is a hallmark for the bacterial response to insults inflicted on DNA. It catalyzes the strand exchange step of homologous recombination and stimulates self-inactivation of the LexA transcriptional repressor. Importantly, by these activities, RecA contributes to the antibiotic resistance of bacteria. An original way to decrease the acquisition of antibiotic resistance would be to block RecA association with LexA. To engineer inhibitors of LexA-RecA complex formation, we have mapped the interaction area between LexA and active RecA-ssDNA filament (RecA*) and generated a three-dimensional model of the complex. The model revealed that one subunit of the LexA dimer wedges into a deep helical groove of RecA*, forming multiple interaction sites along seven consecutive RecA protomers. Based on the model, we predicted that LexA in its DNA-binding conformation also forms a complex with RecA* and that the operator DNA sterically precludes interaction with RecA*, which guides the induction of SOS gene expression. Moreover, the model shows that besides the catalytic C-terminal domain of LexA, its N-terminal DNA-binding domain also interacts with RecA*. Because all the model-based predictions have been confirmed experimentally, the presented model offers a validated insight into the critical step of the bacterial DNA damage response.


Assuntos
Proteínas de Bactérias/química , Recombinases Rec A/química , Proteínas Repressoras/química , Serina Endopeptidases/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Regiões Operadoras Genéticas , Recombinases Rec A/metabolismo , Proteínas Repressoras/metabolismo , Resposta SOS em Genética , Serina Endopeptidases/metabolismo
6.
BMC Microbiol ; 14: 16, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24472116

RESUMO

BACKGROUND: The Escherichia coli uropathogenic-specific protein (Usp) is a bacteriocin-like genotoxin, active against mammalian cells and associated with E. coli strains that provoke pyelonephritis, prostatitis and bacteraemia. Usp is encoded by a small pathogenicity island with three downstream small open reading frames (Imu1-3) that are believed to provide immunity to the producer. To prevent host suicide, colicins, bacteriocins of E. coli, form tight complexes with their cognate immunity proteins. Colicin - immunity protein complexes are among the strongest protein complexes known. Here, the Usp associated immunity protein 3 (Imu3) was partially characterized to gain insight into its role and mechanism of activity. RESULTS: Isolation and partial characterisation of the Usp-associated immunity protein-3 (Imu3) revealed that, while Usp and Imu3 do not form a high affinity complex, Imu3 exhibits DNA and RNA binding activity. Imu3 was also shown to protect DNA against degradation by colicin E7. CONCLUSIONS: Our data infer that nonspecific DNA binding of the Imu3 immunity protein, prevents suicide of E. coli producing the genotoxin Usp.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácidos Nucleicos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética
7.
BMC Microbiol ; 14: 88, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24713082

RESUMO

BACKGROUND: The SOS response including two main proteins LexA and RecA, maintains the integrity of bacterial genomes after DNA damage due to metabolic or environmental assaults. Additionally, derepression of LexA-regulated genes can result in mutations, genetic exchange and expression of virulence factors. Here we describe the first comprehensive description of the in silico LexA regulon in Clostridium difficile, an important human pathogen. RESULTS: We grouped thirty C. difficile strains from different ribotypes and toxinotypes into three clusters according to lexA gene/protein variability. We applied in silico analysis coupled to surface plasmon resonance spectroscopy (SPR) and determined 16 LexA binding sites in C. difficile. Our data indicate that strains within the cluster, as defined by LexA variability, harbour several specific LexA regulon genes. In addition to core SOS genes: lexA, recA, ruvCA and uvrBA, we identified a LexA binding site on the pathogenicity locus (PaLoc) and in the putative promoter region of several genes involved in housekeeping, sporulation and antibiotic resistance. CONCLUSIONS: Results presented here suggest that in C. difficile LexA is not merely a regulator of the DNA damage response genes but also controls the expression of dozen genes involved in various other biological functions. Our in vitro results indicate that in C. difficile inactivation of LexA repressor depends on repressor`s dissociation from the operators. We report that the repressor`s dissociation rates from operators differentiate, thus the determined LexA-DNA dissociation constants imply on the timing of SOS gene expression in C. difficile.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/genética , Regulação Bacteriana da Expressão Gênica , Regulon , Serina Endopeptidases/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Simulação por Computador , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Serina Endopeptidases/genética , Ressonância de Plasmônio de Superfície
8.
J Infect Dis ; 208(10): 1545-52, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23997234

RESUMO

BACKGROUND: Bacterial genotoxins provoke DNA damage and carcinogenesis. The Escherichia coli uropathogenic-specific protein gene, usp, and its linked genes, imu1-3, are associated with strains from pyelonephritis, prostatitis, and bacteremia of urinary tract origin. While the Usp C-terminal domain exhibits similarity with DNase-like colicins and pyocins, its role and mechanisms of action, as well as those of the 3 associated proteins, is unknown. METHODS: We isolated Usp and Imu1-3 and examined their activity on plasmid DNA, human umbilical vein endothelial cells, and human embryonic kidney cells (cell line HEK293). The affect of Usp and Imu1-3 was assessed by MTT and Comet assays, infection assays, caspase 3/7 activity, fluorescently labeled actin staining, and Western blotting. RESULTS: Usp possesses DNase activity and, particularly when coapplied with Imu2, exhibits genotoxic activity in mammalian cells. Infection assays demonstrated that E. coli usp(+) imu1-3(+) affects the viability of mammalian cells, induces increased caspase 3/7 activity, and perturbs cell cytoskeleton structure. CONCLUSIONS: Usp is a novel E. coli genotoxin active against mammalian cells. Optimal in vivo activity of Usp requires Imu2. Infection with E. coli usp(+) imu1-3(+) induces a response characteristic of apoptosis.


Assuntos
Bacteriocinas/farmacologia , Proteínas de Escherichia coli/farmacologia , Mutagênicos/farmacologia , Bacteriocinas/toxicidade , Caspases/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Desoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Mutagênicos/toxicidade
9.
Mol Microbiol ; 86(1): 129-39, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22812562

RESUMO

The synthesis of Eschericha coli colicins is lethal to the producing cell and is repressed during normal growth by the LexA transcription factor, which is the master repressor of the SOS system for repair of DNA damage. Following DNA damage, LexA is inactivated and SOS repair genes are induced immediately, but colicin production is delayed and induced only in terminally damaged cells. The cause of this delay is unknown. Here we identify the global transcription repressor, IscR, as being directly responsible for the delay in colicin K expression during the SOS response, and identify the DNA target for IscR at the colicin K operon promoter. Our results suggest that, IscR stabilizes LexA at the cka promoter after DNA damage thus, preventing its cleavage and inactivation, and this cooperation ensures that suicidal colicin K production is switched on only as a last resort. A similar mechanism operates at the regulatory region of other colicins and, hence, we suggest that many promoters that control the expression of 'lethal' genes are double locked.


Assuntos
Proteínas de Bactérias/metabolismo , Colicinas/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Serina Endopeptidases/metabolismo , Fatores de Transcrição/metabolismo , Bacteriólise , Sequência de Bases , Escherichia coli/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica
10.
BMC Microbiol ; 13: 42, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23421615

RESUMO

BACKGROUND: Bacteriocins are protein antimicrobial agents that are produced by all prokaryotic lineages. Escherichia coli strains frequently produce the bacteriocins known as colicins. One of the most prevalent colicins, colicin M, can kill susceptible cells by hydrolyzing the peptidoglycan lipid II intermediate, which arrests peptidoglycan polymerization steps and provokes cell lysis. Due to the alarming rise in antibiotic resistance and the lack of novel antimicrobial agents, colicin M has recently received renewed attention as a promising antimicrobial candidate. Here the effects of subinhibitory concentrations of colicin M on whole genome transcription in E. coli were investigated, to gain insight into its ecological role and for purposes related to antimicrobial therapy. RESULTS: Transcriptome analysis revealed that exposure to subinhibitory concentrations of colicin M altered expression of genes involved in envelope, osmotic and other stresses, including genes of the CreBC two-component system, exopolysaccharide production and cell motility. Nonetheless, there was no induction of biofilm formation or genes involved in mutagenesis. CONCLUSION: At subinhibitory concentrations colicin M induces an adaptive response primarily to protect the bacterial cells against envelope stress provoked by peptidoglycan damage. Among the first induced were genes of the CreBC two-component system known to promote increased resistance against colicins M and E2, providing novel insight into the ecology of colicin M production in natural environments. While an adaptive response was induced nevertheless, colicin M application did not increase biofilm formation, nor induce SOS genes, adverse effects that can be provoked by a number of traditional antibiotics, providing support for colicin M as a promising antimicrobial agent.


Assuntos
Anti-Infecciosos/toxicidade , Colicinas/toxicidade , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Estresse Fisiológico , Transcriptoma , Escherichia coli/fisiologia
11.
Antonie Van Leeuwenhoek ; 103(4): 763-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23192307

RESUMO

A bacterial strain designated JA-1, related to Janthinobacterium lividum, was isolated from glacier ice samples from the island Spitsbergen in the Arctic. The strain was tested for phenotypic traits and the most prominent appeared to be the dark red brown to black pigmentation different from the violet pigment of Janthinobacterium, Chromobacterium and Iodobacter. Phylogenetic analysis based on 16S rRNA gene sequences and DNA-DNA hybridization tests showed that strain JA-1 belongs to the genus Janthinobacterium but represents a novel lineage distinct from the two known species of this genus, J. lividum and Janthinobacterium agaricidamnosum. The DNA G + C content of strain JA-1 was determined to be 62.3 mol %. The isolate is a psychrotrophic Gram negative bacterium, rod-shaped with rounded ends, containing intracellular inclusions and one polar flagellum. On the basis of the presented results strain JA-1 is proposed as the type strain of a novel species of the genus Janthinobacterium, for which the name Janthinobacterium svalbardensis sp. nov. is proposed (JA-1(T) = DSM 25734, ZIM B637).


Assuntos
Camada de Gelo/microbiologia , Indóis/metabolismo , Oxalobacteraceae/classificação , Oxalobacteraceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Oxalobacteraceae/metabolismo , Oxalobacteraceae/ultraestrutura , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Svalbard
12.
Nucleic Acids Res ; 39(15): 6546-57, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21576225

RESUMO

The bacterial SOS response is essential for the maintenance of genomes, and also modulates antibiotic resistance and controls multidrug tolerance in subpopulations of cells known as persisters. In Escherichia coli, the SOS system is controlled by the interplay of the dimeric LexA transcriptional repressor with an inducer, the active RecA filament, which forms at sites of DNA damage and activates LexA for self-cleavage. Our aim was to understand how RecA filament formation at any chromosomal location can induce the SOS system, which could explain the mechanism for precise timing of induction of SOS genes. Here, we show that stimulated self-cleavage of the LexA repressor is prevented by binding to specific DNA operator targets. Distance measurements using pulse electron paramagnetic resonance spectroscopy reveal that in unbound LexA, the DNA-binding domains sample different conformations. One of these conformations is captured when LexA is bound to operator targets and this precludes interaction by RecA. Hence, the conformational flexibility of unbound LexA is the key element in establishing a co-ordinated SOS response. We show that, while LexA exhibits diverse dissociation rates from operators, it interacts extremely rapidly with DNA target sites. Modulation of LexA activity changes the occurrence of persister cells in bacterial populations.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Proteínas Repressoras/química , Resposta SOS em Genética/genética , Serina Endopeptidases/química , Regulação Alostérica , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Regiões Operadoras Genéticas , Conformação Proteica , Recombinases Rec A/metabolismo , Proteínas Repressoras/metabolismo , Serina Endopeptidases/metabolismo
13.
Biochem Soc Trans ; 40(6): 1507-11, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23176507

RESUMO

Colicins are plasmid-encoded bacteriocins active against Escherichia coli and closely related species of Enterobacteriaceae. They promote microbial diversity and genetic diversity in E. coli populations. Colicin synthesis is characteristically repressed by the LexA protein, the key regulator of the SOS response. As colicins are released by cell lysis, generally two LexA dimers binding to two overlapping SOS boxes control untimely expression. Nevertheless, genetic organization of the colicin clusters, additional transcription regulators as well as post-transcriptional mechanisms involving translational efficiency of the lysis and activity genes fine-tune colicin expression and protect against lethality of colicin production.


Assuntos
Colicinas/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/fisiologia , Colicinas/biossíntese , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Variação Genética , Família Multigênica , Óperon , Resposta SOS em Genética , Serina Endopeptidases/fisiologia , Estresse Fisiológico , Transcrição Gênica
14.
Infect Genet Evol ; 97: 105160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839025

RESUMO

Conjugation is recognized as a mechanism driving dissemination of antibacterial resistances and virulence factors among bacteria. In the presented work conjugative transfer frequency into clinical uropathogenic Escherichia coli strains (UPEC) isolated from patients with symptomatic urinary tract infections was investigated. From 93 obtained UPEC strains only 29 were suitable for conjugation experiments with the plasmid pOX38, a well-known F-plasmid derivative. The study was focused on comparison of conjugation frequencies in plankton and biofilm, including comparison of conjugation frequencies in high and low biofilm biomass with their virulence potential. It was shown that the conjugation frequency depended on the biofilm biomass and was significantly higher in thin (OD580 < 0.3) than in thick biofilm (OD580 ≥ 0.3). Nonmetric multidimensional scaling analysis revealed that higher conjugation frequencies in plankton and biofilm were directly positively correlated with the sum of virulence-associated genes of the recipient strain and presence of multidrug antibiotic resistances. On the other hand, the sum of insensitivities to different bacteriocins was negatively correlated with an increase in the conjugative transfer level. Our results obtained hence indicate that the evolution of potentially more pathogenic strains via conjugation is depended on the strains' ability to be a "good" recipient in the conjugative transfer, possibly due to the ability to form thinner biofilms.


Assuntos
Biofilmes , Infecções por Escherichia coli/microbiologia , Plâncton , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Plâncton/efeitos dos fármacos , Escherichia coli Uropatogênica/efeitos dos fármacos , Fatores de Virulência/genética
15.
Microorganisms ; 10(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456833

RESUMO

Urinary tract infections can be severe, sometimes fatal, diseases whose etiological pathogens are predominantly uropathogenic strains of E. coli (UPEC). To investigate the UPEC pathogenesis, several models have already been established with minor or major disadvantages. The aim was to develop a simple, fast, and inexpensive biomimetic in vitro model based on normal porcine urothelial (NPU) cells that are genetically and physiologically similar to human bladder urothelium and to perform basic studies of E. coli pathogenicity. Initially, the model was tested using a set of control E. coli strains and, subsequently, with human E. coli strains isolated either from patients with urinary infections or from the feces of healthy individuals. A drop in viability of NPU cells was used as a measure of the pathogenicity of the individual strain tested. To visualize the subcellular events, transmission and scanning electron microscopy was performed. The strains were tested for the presence of different virulence-associated genes, phylogroup, type of core lipid, O-serotype, and type of lipopolysaccharide and a statistical analysis of possible correlations between strains' characteristics and the effect on the model was performed. Results showed that our model has the discriminatory power to distinguish pathogenic from non-pathogenic E. coli strains, and to identify new, potentially pathogenic strains.

16.
J Clin Microbiol ; 48(3): 966-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20042631

RESUMO

TcpC, a new Toll/interleukin-1 receptor domain-containing protein of uropathogenic Escherichia coli involved in the suppression of innate immunity, was found in 2008. The aim of the present study was to determine the prevalence of tcpC and its association with virulence factors and phylogenetic groups among strains from a collection of 212 E. coli isolates from urinary tract and skin and soft tissue infections and 90 commensal E. coli strains.


Assuntos
Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Dermatopatias Bacterianas/microbiologia , Infecções dos Tecidos Moles/microbiologia , Infecções Urinárias/microbiologia , Fatores de Virulência/genética , Técnicas de Tipagem Bacteriana , Escherichia coli/isolamento & purificação , Genótipo , Humanos , Filogenia
18.
BMC Microbiol ; 10: 283, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21070632

RESUMO

BACKGROUND: Phenotypic heterogeneity may ensure that a small fraction of a population survives environmental perturbations or may result in lysis in a subpopulation, to increase the survival of siblings. Genes involved in DNA repair and population dynamics play key roles in rapid responses to environmental conditions. In Escherichia coli the transcriptional repressor LexA controls a coordinated cellular response to DNA damage designated the SOS response. Expression of LexA regulated genes, e.g. colicin encoding genes, recA, lexA and umuDC, was examined utilizing transcription fusions with the promoterless gfp at the single cell level. RESULTS: The investigated LexA regulated genes exhibited heterogeneity, as only in a small fraction of the population more intense fluorescence was observed. Unlike recA and lexA, the pore forming and nuclease colicin activity genes as well as umuDC, exhibited no basal level activity. However, in a lexA defective strain high level expression of the gene fusions was observed in the large majority of the cells. All of the investigated genes were expressed in a recA defective strain, albeit at lower levels, revealing expression in the absence of a spontaneous SOS response. In addition, the simultaneous expression of cka, encoding the pore forming colicin K, and lexA, investigated at the single cell level revealed high level expression of only cka in rare individual cells. CONCLUSION: LexA regulated genes exhibit phenotypic heterogeneity as high level expression is observed in only a small subpopulation of cells. Heterogeneous expression is established primarily by stochastic factors and the binding affinity of LexA to SOS boxes.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Serina Endopeptidases/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Resposta SOS em Genética , Serina Endopeptidases/metabolismo
19.
Front Microbiol ; 11: 1785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849403

RESUMO

Population-wide tolerance and persisters enable susceptible bacterial cells to endure hostile environments, including antimicrobial exposure. The SOS response can play a significant role in the generation of persister cells, population-wide tolerance, and shielding. The SOS pathway is an inducible DNA damage repair system that is also pivotal for bacterial adaptation, pathogenesis, and diversification. In addition to the two key SOS regulators, LexA and RecA, some other stressors and stress responses can control SOS factors. Bacteria are exposed to DNA-damaging agents and other environmental and intracellular factors, including cigarette smoke, that trigger the SOS response at a number of sites within the host. The Escherichia coli TisB/IstR module is as yet the only known SOS-regulated toxin-antitoxin module involved in persister formation. Nevertheless, the SOS response plays a key role in the formation of biofilms that are highly recalcitrant to antimicrobials and can be abundant in persisters. Furthermore, the dynamic biofilm environment generates DNA-damaging factors that trigger the SOS response within the biofilm, fueling bacterial adaptation and diversification. This review highlights the SOS response in relation to antimicrobial recalcitrance to antimicrobials in four clinically significant species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Mycobacterium tuberculosis.

20.
Microorganisms ; 8(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111072

RESUMO

The Escherichia coli PAIusp is a small pathogenicity island encoding usp, for the uropathogenic specific protein (Usp), a genotoxin and three associated downstream imu1-3 genes that protect the producer against its own toxin. Bioinformatic analysis revealed the presence of the PAIusp also in publically available Salmonella bongori and Salmonella enterica subps. salamae genome sequences. PAIusp is in all examined sequences integrated within the aroP-pdhR chromosomal intergenic region. The focus of this work was identification of the usp promoter and regulatory elements controlling its activity. We show that, in both E. coli and S. bongori, the divergent TyrR regulated P3 promoter of the aroP gene, encoding an aromatic amino acid membrane transporter, drives usp transcription while H-NS acts antagonistically repressing expression. Our results show that the horizontally acquired PAIusp has integrated into the TyrR regulatory network and that environmental factors such as aromatic amino acids, temperature and urea induce usp expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA