Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Inflamm Res ; 73(4): 597-617, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353723

RESUMO

OBJECTIVE: PANoptosis, a new form of regulated cell death, concomitantly manifests hallmarks for pyroptosis, apoptosis, and necroptosis. It has been usually observed in macrophages, a class of widely distributed innate immune cells in various tissues, upon pathogenic infections. The second-generation curaxin, CBL0137, can trigger necroptosis and apoptosis in cancer-associated fibroblasts. This study aimed to explore whether CBL0137 induces PANoptosis in macrophages in vitro and in mouse tissues in vivo. METHODS: Bone marrow-derived macrophages and J774A.1 cells were treated with CBL0137 or its combination with LPS for indicated time periods. Cell death was assayed by propidium iodide staining and immunoblotting. Immunofluorescence microscopy was used to detect cellular protein distribution. Mice were administered with CBL0137 plus LPS and their serum and tissues were collected for biochemical and histopathological analyses, respectively. RESULTS: The results showed that CBL0137 alone or in combination with LPS induced time- and dose-dependent cell death in macrophages, which was inhibited by a combination of multiple forms of cell death inhibitors but not each alone. This cell death was independent of NLRP3 expression. CBL0137 or CBL0137 + LPS-induced cell death was characterized by simultaneously increased hallmarks for pyroptosis, apoptosis and necroptosis, indicating that this is PANoptosis. Induction of PANoptosis was associated with Z-DNA formation in the nucleus and likely assembly of PANoptosome. ZBP1 was critical in mediating CBL0137 + LPS-induced cell death likely by sensing Z-DNA. Moreover, intraperitoneal administration of CBL0137 plus LPS induced systemic inflammatory responses and caused multi-organ (including the liver, kidney and lung) injury in mice due to induction of PANoptosis in these organs. CONCLUSIONS: CBL0137 alone or plus inflammatory stimulation induces PANoptosis both in vitro and in vivo, which is associated with systemic inflammatory responses in mice.


Assuntos
Carbazóis , DNA Forma Z , Neoplasias , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Apoptose , Piroptose
2.
Acta Pharmacol Sin ; 45(3): 594-608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37964019

RESUMO

PANoptosis is a new type of cell death featured with pyroptosis, apoptosis and necroptosis, and is implicated in organ injury and mortality in various inflammatory diseases, such as sepsis and hemophagocytic lymphohistiocytosis (HLH). Reverse electron transport (RET)-mediated mitochondrial reactive oxygen species (mtROS) has been shown to contribute to pyroptosis and necroptosis. In this study we investigated the roles of mtROS and RET in PANoptosis induced by TGF-ß-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (Oxo) plus lipopolysaccharide (LPS) as well as the effects of anti-RET reagents on PANoptosis. We showed that pretreatment with anti-RET reagents 1-methoxy PMS (MPMS) or dimethyl fumarate (DMF) dose-dependently inhibited PANoptosis in macrophages BMDMs and J774A.1 cells induced by Oxo/LPS treatment assayed by propidium iodide (PI) staining. The three arms of the PANoptosis signaling pathway, namely pyroptosis, apoptosis and necroptosis signaling, as well as the formation of PANoptosomes were all inhibited by MPMS or DMF. We demonstrated that Oxo/LPS treatment induced RET and mtROS in BMDMs, which were reversed by MPMS or DMF pretreatment. Interestingly, the PANoptosome was co-located with mitochondria, in which the mitochondrial DNA was oxidized. MPMS and DMF fully blocked the mtROS production and the formation of PANoptosome induced by Oxo plus LPS treatment. An HLH mouse model was established by poly(I:C)/LPS challenge. Pretreatment with DMF (50 mg·kg-1·d-1, i.g. for 3 days) or MPMS (10 mg·kg-1·d-1, i.p. for 2 days) (DMF i.g. MPMS i.p.) effectively alleviated HLH lesions accompanied by decreased hallmarks of PANoptosis in the liver and kidney. Collectively, RET and mtDNA play crucial roles in PANoptosis induction and anti-RET reagents represent a novel class of PANoptosis inhibitors by blocking oxidation of mtDNA, highlighting their potential application in treating PANoptosis-related inflammatory diseases. PANoptotic stimulation induces reverse electron transport (RET) and reactive oxygen species (ROS) in mitochondia, while 1-methoxy PMS and dimethyl fumarate can inhibit PANoptosis by suppressing RETmediated oxidation of mitochondrial DNA.


Assuntos
DNA Mitocondrial , Fumarato de Dimetilo , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Transporte de Elétrons , Fumarato de Dimetilo/metabolismo , Fumarato de Dimetilo/farmacologia , DNA Mitocondrial/metabolismo , Lipopolissacarídeos/farmacologia , Elétrons , Mitocôndrias , Apoptose
3.
Apoptosis ; 28(11-12): 1646-1665, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37702860

RESUMO

Macrophages represent the first lines of innate defense against pathogenic infections and are poised to undergo multiple forms of regulated cell death (RCD) upon infections or toxic stimuli, leading to multiple organ injury. Triptolide, an active compound isolated from Tripterygium wilfordii Hook F., possesses various pharmacological activities including anti-tumor and anti-inflammatory effects, but its applications have been hampered by toxic adverse effects. It remains unknown whether and how triptolide induces different forms of RCD in macrophages. In this study, we showed that triptolide exhibited significant cytotoxicity on cultured macrophages in vitro, which was associated with multiple forms of lytic cell death that could not be fully suppressed by any one specific inhibitor for a single form of RCD. Consistently, triptolide induced the simultaneous activation of pyroptotic, apoptotic and necroptotic hallmarks, which was accompanied by the co-localization of ASC specks respectively with RIPK3 or caspase-8 as well as their interaction with each other, indicating the formation of PANoptosome and thus the induction of PANoptosis. Triptolide-induced PANoptosis was associated with mitochondrial dysfunction and ROS production. PANoptosis was also induced by triptolide in mouse peritoneal macrophages in vivo. Furthermore, triptolide caused kidney and liver injury, which was associated with systemic inflammatory responses and the activation of hallmarks for PANoptosis in vivo. Collectively, our data reveal that triptolide induces PANoptosis in macrophages in vitro and exhibits nephrotoxicity and hepatotoxicity associated with induction of PANoptosis in vivo, suggesting a new avenue to alleviate triptolide's toxicity by harnessing PANoptosis.


Assuntos
Diterpenos , Fenantrenos , Camundongos , Animais , Apoptose , Macrófagos/metabolismo , Diterpenos/efeitos adversos , Diterpenos/metabolismo , Fenantrenos/toxicidade , Fenantrenos/metabolismo , Compostos de Epóxi/toxicidade , Compostos de Epóxi/metabolismo
4.
Pharmacol Res ; 189: 106697, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796462

RESUMO

Necroptosis has been implicated in various inflammatory diseases including tumor-necrosis factor-α (TNF-α)-induced systemic inflammatory response syndrome (SIRS). Dimethyl fumarate (DMF), a first-line drug for treating relapsing-remitting multiple sclerosis (RRMS), has been shown to be effective against various inflammatory diseases. However, it is still unclear whether DMF can inhibit necroptosis and confer protection against SIRS. In this study, we found that DMF significantly inhibited necroptotic cell death in macrophages induced by different necroptotic stimulations. Both the autophosphorylation of receptor-interacting serine/threonine kinase 1 (RIPK1) and RIPK3 and the downstream phosphorylation and oligomerization of MLKL were robustly suppressed by DMF. Accompanying the suppression of necroptotic signaling, DMF blocked the mitochondrial reverse electron transport (RET) induced by necroptotic stimulation, which was associated with its electrophilic property. Several well-known anti-RET reagents also markedly inhibited the activation of the RIPK1-RIPK3-MLKL axis accompanied by decreased necrotic cell death, indicating a critical role of RET in necroptotic signaling. DMF and other anti-RET reagents suppressed the ubiquitination of RIPK1 and RIPK3, and they attenuated the formation of necrosome. Moreover, oral administration of DMF significantly alleviated the severity of TNF-α-induced SIRS in mice. Consistent with this, DMF mitigated TNF-α-induced cecal, uterine, and lung damage accompanied by diminished RIPK3-MLKL signaling. Collectively, DMF represents a new necroptosis inhibitor that suppresses the RIPK1-RIPK3-MLKL axis through blocking mitochondrial RET. Our study highlights DMF's potential therapeutic applications for treating SIRS-associated diseases.


Assuntos
Proteínas Quinases , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases/metabolismo , Fumarato de Dimetilo , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Síndrome de Resposta Inflamatória Sistêmica , Fosforilação Oxidativa , Apoptose
5.
Acta Pharmacol Sin ; 44(10): 2019-2036, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37221235

RESUMO

Activation of NLR family pyrin domain-containing 3 (NLRP3) inflammasome plays important role in defending against infections, but its aberrant activation is causally linked to many inflammatory diseases, thus being a therapeutic target for these diseases. Theaflavin, one major ingredient of black tea, exhibits potent anti-inflammatory and anti-oxidative activities. In this study, we investigated the therapeutic effects of theaflavin against NLRP3 inflammasome activation in macrophages in vitro and in animal models of related diseases. We showed that theaflavin (50, 100, 200 µM) dose-dependently inhibited NLRP3 inflammasome activation in LPS-primed macrophages stimulated with ATP, nigericin or monosodium urate crystals (MSU), evidenced by reduced release of caspase-1p10 and mature interleukin-1ß (IL-1ß). Theaflavin treatment also inhibited pyroptosis as shown by decreased generation of N-terminal fragment of gasdermin D (GSDMD-NT) and propidium iodide incorporation. Consistent with these, theaflavin treatment suppressed ASC speck formation and oligomerization in macrophages stimulated with ATP or nigericin, suggesting reduced inflammasome assembly. We revealed that theaflavin-induced inhibition on NLRP3 inflammasome assembly and pyroptosis resulted from ameliorated mitochondrial dysfunction and reduced mitochondrial ROS production, thereby suppressing interaction between NLRP3 and NEK7 downstream of ROS. Moreover, we showed that oral administration of theaflavin significantly attenuated MSU-induced mouse peritonitis and improved the survival of mice with bacterial sepsis. Consistently, theaflavin administration significantly reduced serum levels of inflammatory cytokines including IL-1ß and attenuated liver inflammation and renal injury of mice with sepsis, concomitant with reduced generation of caspase-1p10 and GSDMD-NT in the liver and kidney. Together, we demonstrate that theaflavin suppresses NLRP3 inflammasome activation and pyroptosis by protecting mitochondrial function, thus mitigating acute gouty peritonitis and bacterial sepsis in mice, highlighting a potential application in treating NLRP3 inflammasome-related diseases.


Assuntos
Gota , Peritonite , Sepse , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio , Nigericina/uso terapêutico , Peritonite/tratamento farmacológico , Antioxidantes/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Caspases , Trifosfato de Adenosina , Interleucina-1beta/metabolismo
6.
Acta Pharmacol Sin ; 43(5): 1324-1336, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34376811

RESUMO

Monosodium urate (MSU) crystals, the etiological agent of gout, are formed in joints and periarticular tissues due to long-lasting hyperuricemia. Although MSU crystal-triggered NLRP3 inflammasome activation and interleukin 1ß (IL-1ß) release are known to have key roles in gouty arthritis, recent studies revealed that MSU crystal-induced necrosis also plays a critical role in this process. However, it remains unknown what forms of necrosis have been induced and whether combined cell death inhibitors can block such necrosis. Here, we showed that MSU crystal-induced necrosis in murine macrophages was not dependent on NLRP3 inflammasome activation, as neither genetic deletion nor pharmacological blockade of the NLRP3 pathway inhibited the necrosis. Although many cell death pathways (such as ferroptosis and pyroptosis) inhibitors or reactive oxygen species inhibitors did not have any suppressive effects, necroptosis pathway inhibitors GSK'872 (RIPK3 inhibitor), and GW806742X (MLKL inhibitor) dose-dependently inhibited MSU crystal-induced necrosis. Moreover, a triple combination of GSK'872, GW806742X, and IDN-6556 (pan-caspase inhibitor) displayed enhanced inhibition of the necrosis, which was further fortified by the addition of MCC950 (NLRP3 inhibitor), suggesting that multiple cell death pathways might have been triggered by MSU crystals. Baicalin, a previously identified inhibitor of NLRP3, inhibited MSU crystal-induced inflammasome activation and suppressed the necrosis in macrophages. Besides, baicalin gavage significantly ameliorated MSU crystal-induced peritonitis in mice. Altogether, our data indicate that MSU crystals induce NLRP3-independent necrosis, which can be inhibited by combined inhibitors for multiple signaling pathways, highlighting a new avenue for the treatment of gouty arthritis.


Assuntos
Artrite Gotosa , Gota , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/metabolismo , Gota/tratamento farmacológico , Gota/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Necrose/induzido quimicamente , Necrose/tratamento farmacológico , Transdução de Sinais , Ácido Úrico
7.
BMC Med Genet ; 21(1): 134, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560637

RESUMO

BACKGROUND: Liver cancer is one of the most common cancers in the world. The primary aim of this research was to discover the correlation between single nucleotide polymorphisms (SNPs) of the MIR155HG and liver cancer risk. METHODS: The selected SNPs in MIR155HG were genotyped utilizing the Agena MassARRAY platform. We evaluated the correlation between MIR155HG polymorphisms and Liver cancer by genetic model analysis, stratification analysis and haplotype analysis. Relative risk of Liver cancer was shown based on odds ratios (ORs) and 95% confidence intervals (95% CIs). RESULTS: Our results uncovered that rs12482371 and rs1893650 in the MIR155HG were associated with protection against Liver cancer. And the rs928883 was related to increase risk of Liver cancer. Furthermore, apart from rs77218221, other selected SNPs formed two LD blocks, and haplotype "GATAG" in block 2 elevated individual liver cancer risk. CONCLUSIONS: MIR155HG gene polymorphism may be correlated to Liver cancer susceptibility in Han Chinese population, particularly in males and aged ≤55 years.


Assuntos
Povo Asiático/genética , Etnicidade/genética , Predisposição Genética para Doença , Neoplasias Hepáticas/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética , Fatores Etários , Estudos de Casos e Controles , Feminino , Haplótipos/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais
8.
Apoptosis ; 21(2): 130-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26531131

RESUMO

CPT-11 (Irinotecan) is a first-line chemotherapeutic agent in clinic, but it may induce side effects including diarrhea and enteritis in patients. The underlying mechanism of CPT-11's intestinal toxicity is unclear. Peritoneal resident macrophages have been reported to be important for the maintenance of intestinal homeostasis. In this study, we evaluated the cytotoxic effects of CPT-11 on mouse peritoneal resident macrophages. CPT-11 was administered intraperitoneally to mice and their peritoneal exudate cells were isolated for evaluation. CPT-11 treatment strikingly decreased the ratio of F4/80(hi)MHCII(low) large peritoneal macrophages (LPMs), which are regarded as prenatally-originated peritoneal resident macrophages. Consistent with this, the transcription factor GATA6 specifically expressed in LPMs was barely detectable in the macrophages from CPT-11-treated mice, indicative of elimination of LPMs. Such elimination of LPMs was at least partly due to CPT-induced apoptosis in macrophages, because inhibition of apoptosis by caspase-3 inhibitor z-DEVD-fmk significantly diminished the loss of GATA6(+) LPMs. As GATA6 is a transcription factor that controls expression of multiple genes regulating peritoneal B-1 cell development and translocation, elimination of GATA6(+) LPMs led to a great reduction in B-1 cells in the peritoneal cavity after CPT-11 treatment. These results indicated that CPT-11-induced apoptosis contributed to the elimination of peritoneal resident macrophages, which might in turn impair the function of peritoneal B-1 cells in maintaining intestinal homeostasis. Our findings may at least partly explain why CPT-11 treatment in cancer patients induces diarrhea and enteritis, which may provide a novel avenue to prevent such side effects.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Apoptose/efeitos dos fármacos , Camptotecina/análogos & derivados , Macrófagos Peritoneais/fisiologia , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Enterite/induzido quimicamente , Feminino , Injeções Intraperitoneais , Irinotecano , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7
9.
Toxicol Appl Pharmacol ; 292: 56-64, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26765310

RESUMO

Gossypol, a polyphenolic compound isolated from cottonseeds, has been reported to possess many pharmacological activities, but whether it can influence inflammasome activation remains unclear. In this study, we found that in mouse macrophages, gossypol induced cell death characterized by rapid membrane rupture and robust release of HMGB1 and pro-caspase-11 comparable to ATP treatment, suggesting an induction of pyroptotic cell death. Unlike ATP, gossypol induced much low levels of mature interleukin-1ß (IL-1ß) secretion from mouse peritoneal macrophages primed with LPS, although it caused pro-IL-1ß release similar to that of ATP. Consistent with this, activated caspase-1 responsible for pro-IL-1ß maturation was undetectable in gossypol-treated peritoneal macrophages. Besides, RAW 264.7 cells lacking ASC expression and caspase-1 activation also underwent pyroptotic cell death upon gossypol treatment. In further support of pyroptosis induction, both pan-caspase inhibitor and caspase-1 subfamily inhibitor, but not caspase-3 inhibitor, could sharply suppress gossypol-induced cell death. Other canonical pyroptotic inhibitors, including potassium chloride and N-acetyl-l-cysteine, could suppress ATP-induced pyroptosis but failed to inhibit or even enhanced gossypol-induced cell death, whereas nonspecific pore-formation inhibitor glycine could attenuate this process, suggesting involvement of a non-canonical pathway. Of note, gossypol treatment eliminated thioglycollate-induced macrophages in the peritoneal cavity with recruitment of other leukocytes. Moreover, gossypol administration markedly decreased the survival of mice in a bacterial sepsis model. Collectively, these results suggested that gossypol induced pyroptosis in mouse macrophages via a non-canonical inflammasome pathway, which raises a concern for its in vivo cytotoxicity to macrophages.


Assuntos
Gossipol/toxicidade , Inflamassomos/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Piroptose/fisiologia , Transdução de Sinais/fisiologia
10.
Yi Chuan ; 37(2): 111-120, 2015 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-25665637

RESUMO

Protein deacetylases play an extremely crucial role in cellular biological processes and have been categorized into four families (HDACⅠ, HDACⅡ, HDACⅢ and HDACⅣ) in human. Of them, HDACⅢ, also known as the Sir2 (Silent information regulator 2) family, contains seven members, SIRT1-7, each exhibiting different cellular localization and biological function. As a major mitochondrial deacetylase, SIRT3 not only modulates cellular metabolism, but also plays important roles in apoptosis, tumor growth, aging and a number of other diseases. In this review, we summarize recent findings related to SIRT3 with an emphasis on its biological functions in regulating cell metabolism and its possible roles in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/etiologia , Metabolismo Energético , Sirtuína 3/fisiologia , Animais , Apoptose , Humanos , Transdução de Sinais
11.
Front Cardiovasc Med ; 11: 1340199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333413

RESUMO

Background: Calcific aortic valve disease (CAVD) is one of the most prevalent valvular diseases and is the second most common cause for cardiac surgery. However, the mechanism of CAVD remains unclear. This study aimed to investigate the role of pyroptosis-related genes in CAVD by performing comprehensive bioinformatics analysis. Methods: Three microarray datasets (GSE51472, GSE12644 and GSE83453) and one RNA sequencing dataset (GSE153555) were obtained from the Gene Expression Omnibus (GEO) database. Pyroptosis-related differentially expressed genes (DEGs) were identified between the calcified and the normal valve samples. LASSO regression and random forest (RF) machine learning analyses were performed to identify pyroptosis-related DEGs with diagnostic value. A diagnostic model was constructed with the diagnostic candidate pyroptosis-related DEGs. Receiver operating characteristic (ROC) curve analysis was performed to estimate the diagnostic performances of the diagnostic model and the individual diagnostic candidate genes in the training and validation cohorts. CIBERSORT analysis was performed to estimate the differences in the infiltration of the immune cell types. Pearson correlation analysis was used to investigate associations between the diagnostic biomarkers and the immune cell types. Immunohistochemistry was used to validate protein concentration. Results: We identified 805 DEGs, including 319 down-regulated genes and 486 up-regulated genes. These DEGs were mainly enriched in pathways related to the inflammatory responses. Subsequently, we identified 17 pyroptosis-related DEGs by comparing the 805 DEGs with the 223 pyroptosis-related genes. LASSO regression and RF algorithm analyses identified three CAVD diagnostic candidate genes (TREM1, TNFRSF11B, and PGF), which were significantly upregulated in the CAVD tissue samples. A diagnostic model was constructed with these 3 diagnostic candidate genes. The diagnostic model and the 3 diagnostic candidate genes showed good diagnostic performances with AUC values >0.75 in both the training and the validation cohorts based on the ROC curve analyses. CIBERSORT analyses demonstrated positive correlation between the proportion of M0 macrophages in the valve tissues and the expression levels of TREM1, TNFRSF11B, and PGF. Conclusion: Three pyroptosis-related genes (TREM1, TNFRSF11B and PGF) were identified as diagnostic biomarkers for CAVD. These pyroptosis genes and the pro-inflammatory microenvironment in the calcified valve tissues are potential therapeutic targets for alleviating CAVD.

12.
Int Immunopharmacol ; 139: 112710, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029229

RESUMO

PANoptosis is manifested with simultaneous activation of biomarkers for both pyroptotic, apoptotic and necroptotic signaling via the molecular platform PANoptosome and it is involved in pathologies of various inflammatory diseases including hemophagocytic lymphohistiocytosis (HLH). Scutellarin is a flavonoid isolated from herbal Erigeron breviscapus (Vant.) Hand.-Mazz. and has been shown to possess multiple pharmacological effects, but it is unknown whether scutellarin has any effects on PANoptosis and related inflammatory diseases. In this study, we found that scutellarin inhibited cell death in bone marrow-derived macrophages (BMDMs) and J774A.1 cells treated with TGF-ß-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (OXO) plus lipopolysaccharide (LPS), which has been commonly used to induce PANoptosis. Western blotting showed that scutellarin dose-dependently inhibited the activation biomarkers for pyroptotic (Caspase-1p10 and GSDMD-NT), apoptotic (cleaved Casp3/8/9 and GSDME-NT), and necroptotic (phosphorylated MLKL) signaling. The inhibitory effect of scutellarin was unaffected by NLRP3 or Caspase-1 deletion. Interestingly, scutellarin blocked the assembly of PANoptosome that encompasses ASC, RIPK3, Caspase-8 and ZBP1, suggesting its action on upstream signaling. Consistent with this, scutellarin inhibited mitochondrial damage and mitochondrial reactive oxygen species (mtROS) generation in cells treated with OXO+LPS. Further, mito-TEMPO that can scavenge mtROS significantly inhibited OXO+LPS-induced PANoptotic cell death. In line with the in vitro results, scutellarin markedly alleviated systemic inflammation, multiple organ injury, and activation of PANoptotic biomarkers in mice with HLH. Collectively, our data suggest that scutellarin can inhibit PANoptosis by suppressing mitochondrial damage and mtROS generation and thereby mitigating multiple organ injury in mice with inflammatory disorders.

13.
Int Immunopharmacol ; 130: 111680, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38368772

RESUMO

Fulminant hepatitis (FH) is a severe clinical syndrome leading to hepatic failure and even mortality. D-galactosamine (D-GalN) plus lipopolysaccharide (LPS) challenge is commonly used to establish an FH mouse model, but the mechanism underlying D-GalN/LPS-induced liver injury is incompletely understood. Previously, it has been reported that extracellular ATP that can be released under cytotoxic and inflammatory stresses serves as a damage signal to induce potassium ion efflux and trigger the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome activation through binding to P2X7 receptor. In this study, we tried to investigate whether it contributed to the fulminant hepatitis (FH) induced by D-GalN plus LPS. In an in vitro cellular model, D-GalN plus extracellular ATP, instead of D-GalN alone, induced pyroptosis and apoptosis, accompanied by mitochondrial reactive oxygen species (ROS) burst, and the oligomerization of Drp1, Bcl-2, and Bak, as well as the loss of mitochondrial membrane potential in LPS-primed macrophages, well reproducing the events induced by D-GalN and LPS in vivo. Moreover, these events in the cellular model were markedly suppressed by both A-804598 (an ATP receptor P2X7R inhibitor) and glibenclamide (an ATP-sensitive potassium ion channel inhibitor); in the FH mouse model, administration of A-804598 significantly mitigated D-GalN/LPS-induced hepatic injury, mitochondrial damage, and the activation of apoptosis and pyroptosis signaling, corroborating the contribution of extracellular ATP to the cell death. Collectively, our data suggest that extracellular ATP acts as an autologous damage-associated molecular pattern to augment mitochondrial damage, hepatic cell death, and liver injury in D-GalN/LPS-induced FH mouse model.


Assuntos
Guanidinas , Lipopolissacarídeos , Necrose Hepática Massiva , Quinolinas , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Galactosamina/farmacologia , Fígado/metabolismo , Apoptose , Trifosfato de Adenosina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Free Radic Biol Med ; 212: 117-132, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38151213

RESUMO

Damage-associated molecular patterns (DAMPs) such as extracellular ATP and nigericin (a bacterial toxin) not only act as potassium ion (K+) efflux inducers to activate NLRP3 inflammasome, leading to pyroptosis, but also induce cell death independently of NLRP3 expression. However, the roles of energy metabolism in determining NLRP3-dependent pyroptosis and -independent necrosis upon K+ efflux are incompletely understood. Here we established cellular models by pharmacological blockade of energy metabolism, followed by stimulation with a K+ efflux inducer (ATP or nigericin). Two energy metabolic inhibitors, namely CPI-613 that targets α-ketoglutarate dehydrogenase and pyruvate dehydrogenase (a rate-limiting enzyme) and 2-deoxy-d-glucose (2-DG) that targets hexokinase, are recruited in this study, and Nlrp3 gene knockout macrophages were used. Our data showed that CPI-613 and 2-DG dose-dependently inhibited NLRP3 inflammasome activation, but profoundly increased cell death in the presence of ATP or nigericin. The cell death was K+ efflux-induced but NLRP3-independent, which was associated with abrupt reactive oxygen species (ROS) production, reduction of mitochondrial membrane potential, and oligomerization of mitochondrial proteins, all indicating mitochondrial damage. Notably, the cell death induced by K+ efflux and blockade of energy metabolism was distinct from pyroptosis, apoptosis, necroptosis or ferroptosis. Furthermore, fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, significantly suppressed CPI-613+nigericin-induced mitochondrial damage and cell death. Collectively, our data show that energy deficiency diverts NLRP3 inflammasome activation-dependent pyroptosis to Nlrp3-independent necrosis upon K+ efflux inducers, which can be dampened by high-energy intermediate, highlighting a critical role of energy metabolism in cell survival and death under inflammatory conditions.


Assuntos
Caprilatos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sulfetos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Nigericina/farmacologia , Potássio/metabolismo , Necrose/genética , Metabolismo Energético/genética , Trifosfato de Adenosina/metabolismo , Interleucina-1beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
J Cell Biochem ; 114(10): 2415-29, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23695982

RESUMO

Accumulating evidence indicates that cucurbitacin B (CuB), as well as other cucurbitacins, damages the actin cytoskeleton in a variety of cell types. However, the underlying mechanism of such an effect is not well understood. In this study, we showed that CuB rapidly induced actin aggregation followed by actin rod formation in melanoma cells. Cofilin, a critical regulator of actin dynamics, was dramatically dephosphorylated (i.e., activated) upon CuB treatment. Notably, the activated cofilin subsequently formed rod-like aggregates, which were highly colocalized with actin rods, indicating the formation of cofilin-actin rods. Cofilin knockdown significantly suppressed rod formation but did not prevent actin aggregation. Furthermore, knockdown of the cofilin phosphatase Slingshot homolog 1 (SSH1), but not chronophin (CIN), alleviated CuB-induced cofilin hyperactivation and cofilin-actin rod formation. The activity of Rho kinase and LIM kinase, two upstream regulators of cofilin activation, was downregulated after cofilin hyperactivation. Pretreatment with a thiol-containing reactive oxygen species (ROS) scavenger N-acetyl cysteine, but not other ROS inhibitors without thiol groups, suppressed CuB-induced actin aggregation, cofilin hyperactivation and cofilin-actin rod formation, suggesting that thiol oxidation might be involved in these processes. Taken together, our results demonstrated that CuB-induced formation of cofilin-actin rods was mediated by SSH1-dependent but CIN-independent cofilin hyperactivation.


Assuntos
Actinas/metabolismo , Cofilina 1/metabolismo , Cucurbitacinas/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Microscopia de Fluorescência , Espécies Reativas de Oxigênio/metabolismo
16.
Front Neurosci ; 17: 1238176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781255

RESUMO

Background: Distal radius fractures are a common type of fracture. For patients treated with closed reduction with splinting, a period of rehabilitation is still required after the removal of the splint. However, there is a general lack of attention and low compliance to rehabilitation training during this period, so it is necessary to build a rehabilitation training monitoring system to improve the efficiency of patients' rehabilitation. Methods: A wearable rehabilitation training wristband was proposed, which could be used in the patient's daily rehabilitation training scenario and could recognize four common wrist rehabilitation actions in real-time by using three thin film pressure sensors to detect the pressure change curve at three points on the wrist. An algorithmic framework for classifying rehabilitation training actions was proposed. In our framework, an action pre-detection strategy was designed to exclude false detections caused by switching initial gestures during rehabilitation training and wait for the arrival of the complete signal. To classify the action signals into four categories, firstly an autoencoder was used to downscale the original signal. Six SVMs were then used for evaluation and voting, and the final action with the highest number of votes would be used as the prediction result. Results: Experimental results showed that the proposed algorithmic framework achieved an average recognition accuracy of 89.62%, an average recognition recall of 88.93%, and an f1 score of 89.27% on the four rehabilitation training actions. Conclusion: The developed device has the advantages of being small size and easy to wear, which can quickly and accurately identify and classify four common rehabilitation training actions. It can easily be combined with peripheral devices and technologies (e.g., cell phones, computers, Internet) to build different rehabilitation training scenarios, making it worthwhile to use and promote in clinical settings.

17.
J Cardiovasc Transl Res ; 16(5): 1021-1031, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37097589

RESUMO

Vascular smooth muscle cells (VSMCs) are involved in restenosis of bypass grafts and cause artery graft occlusion. This study aimed to explore the role of Slit2 in phenotypic switching of VSMCs and its effect on restenosis of vascular conduits. An animal model of vascular graft restenosis (VGR) was produced in SD rats and assessed by echocardiography. The expression of Slit2 and Hif-1α was measured in vivo and in vitro. After Slit2 overexpression, the migration and proliferation of VSMCs were detected in vitro, and the restenosis rates and phenotype of VSMCs were tested in vivo. The arteries of the VGR model presented significant stenosis, and Slit2 was decreased in VSMCs of the VGR model. In vitro, Slit2 overexpression inhibited the migration and proliferation of VSMCs, but Slit2 knockdown promoted migration and proliferation. Hypoxia induced Hif-1α but reduced Slit2, and Hif-1α negatively regulated Slit2 expression. Moreover, Slit2 overexpression weakened the rate of VGR and maintained the patency of artery bypass grafts, which suppressed the phenotypic switching of VSMCs. Slit2 inhibited the synthetic phenotype transformation to inhibit the migration and proliferation of VSMCs and delayed the VGR via Hif-1α.


Assuntos
Reestenose Coronária , Músculo Liso Vascular , Miócitos de Músculo Liso , Animais , Ratos , Movimento Celular , Proliferação de Células , Células Cultivadas , Constrição Patológica/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Ratos Sprague-Dawley
18.
Front Bioeng Biotechnol ; 11: 1342229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38268941

RESUMO

Background: Closed reduction is the preferred treatment for distal radius fractures. However, it requires a multiple experienced medical staff and manually maintaining stable traction is difficult. Additionally, doctors cannot assess the reduction status of a fracture in real-time through radiographic images, which may lead to improper reduction. Furthermore, post-fracture complications such as joint adhesion, stiffness, and impaired mobility pose a challenge for the doctors. So it is necessary to optimize the treatment process of the distal radius fracture through technological means. Methods: A robot-assisted closed reduction and rehabilitation system, which could assist doctors throughout the entire process of reduction, fixation, and rehabilitation of distal radius fractures, was developed. A mechanical system, composed of two grippers and a cooperative robotic arm, was used to grasp and tract the affected limb. A doctor controlled the robot through a joystick console and Windows application program. A biplane radiographic device was integrated into the system, which is not only convenient for doctors to view radiographic images of the fracture at any time but also for them to select the rotation axis of the wrist on the images before reduction and rehabilitation. Important information including the anteroposterior and lateral radiographic data and force and position parameters during the reduction and rehabilitation process were displayed on a graphic user interface. Results: Experimental results showed that the proposed robotic system can meet the technical requirements for the reduction and rehabilitation of distal radius fractures, all the rotation angles could be achieved, a maximum force of more than 50 N could be achieved in all traction directions, and the error in selecting the wrist joint rotation axis line using radiographic images was less than 5 mm. Conclusion: The developed robot-assisted system was shown to be suitable for closed reduction and rehabilitation of distal radius fractures, contributing a potential improvement in the quality of the procedures.

19.
Int Immunopharmacol ; 117: 109974, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37012867

RESUMO

Necroptosis is a necrotic form of regulated cell death, which is primarily mediated by the receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) pathway in a caspase-independent manner. Necroptosis has been found to occur in virtually all tissues and diseases evaluated, including pancreatitis. Celastrol, a pentacyclic triterpene extracted from the roots of Tripterygium wilfordii (thunder god vine), possesses potent anti-inflammatory and anti-oxidative activities. Yet, it is unclear whether celastrol has any effects on necroptosis and necroptotic-related diseases. Here we showed that celastrol significantly suppressed necroptosis induced by lipopolysaccharide (LPS) plus pan-caspase inhibitor (IDN-6556) or by tumor-necrosis factor-α in combination with LCL-161 (Smac mimetic) and IDN-6556 (TSI). In these in vitro cellular models, celastrol inhibited the phosphorylation of RIPK1, RIPK3, and MLKL and the formation of necrosome during necroptotic induction, suggesting its possible action on upstream signaling of the necroptotic pathway. Consistent with the known role of mitochondrial dysfunction in necroptosis, we found that celastrol significantly rescued TSI-induced loss of mitochondrial membrane potential. TSI-induced intracellular and mitochondrial reactive oxygen species (mtROS), which are involved in the autophosphorylation of RIPK1 and recruitment of RIPK3, were significantly attenuated by celastrol. Moreover, in a mouse model of acute pancreatitis that is associated with necroptosis, celastrol administration significantly reduced the severity of caerulein-induced acute pancreatitis accompanied by decreased phosphorylation of MLKL in pancreatic tissues. Collectively, celastrol can attenuate the activation of RIPK1/RIPK3/MLKL signaling likely by attenuating mtROS production, thereby inhibiting necroptosis and conferring protection against caerulein-induced pancreatitis in mice.


Assuntos
Pancreatite , Camundongos , Animais , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Proteínas Quinases/metabolismo , Necroptose , Ceruletídeo , Doença Aguda , Triterpenos Pentacíclicos , Caspases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose
20.
J Tradit Chin Med ; 32(2): 148-55, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22876436

RESUMO

OBJECTIVE: H1N1 was a new and potentially serious infectious disease, in human, the severity of influenza can vary from mild to severe, thus to find an effective and safety way to control the influenza pandemic is of crucial importance. This retrospective study describes the duration of viral shedding in H1N1 patients that were hospitalized and treated in China. METHODS: Clinical data were collected from May to July, 2009 in China for 963 patients with influenza A (H1N1) virus infection. Patients were treated based on the guidelines issued by the Chinese Ministry of Health. The primary outcome was duration of viral shedding and statistical comparisons were performed. RESULTS: In the patients with body temperature greater than 38.0 degrees C, there were no differences in virus shedding duration among the patients taking oseltamivir within two days, patients undergoing Traditional Chinese Medicine (TCM) therapy or those receiving no drug therapy. In patients with body temperature > or =38.1 degrees C, TCM therapy reduced the viral shedding duration (P < 0.05, vs. oseltamivir therapy). Furthermore, taking oseltamivir two days after onset of symptoms might prolong the virus shedding duration (P < 0.05, vs. taking oseltamivir less than 2 days of onset). CONCLUSION: TCM therapy is effective for reducing the length of virus shedding in patients with body temperature > or =38.0 degrees C. Oseltamivir used for reducing virus shedding duration should be taken within two days of onset.


Assuntos
Antivirais/uso terapêutico , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/tratamento farmacológico , Medicina Tradicional Chinesa , Oseltamivir/uso terapêutico , Eliminação de Partículas Virais/efeitos dos fármacos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA