Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biochem Biophys Res Commun ; 723: 150186, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830298

RESUMO

The aim of this study was to investigate the anti-cancer effects of resveratrol (RES) against gastric cancer (GC) and explore the potential mechanisms. We first measured the anti-cancer effects of RES on GC cell lines (i.e. AGS and HGC-27). Then protein-protein interaction (PPI) network was constructed, followed by GO and KEGG analysis to screen the possible targets. Molecular docking analysis was given to visualize the pharmacological effects of RES on GC cell lines. For the in vivo experiments, xenograft tumor model was established, and Western blot analysis was performed to determine the expression of protein screened by network pharmacology. Our results showed that RES could promote the apoptosis of GC cells. Five hub targets were identified by network pharmacology, including AKT1, TP53, JUN, ESR1 and MAPK14. GO and KEGG analyses revealed the PI3K/Akt/P53 signaling pathway was the most related signaling pathway. Molecular docking analysis indicated that RES could form 3 hydrogen bonds with AKT1 and 3 hydrogen bonds with TP53. The inhibitory effects of RES on the proliferation and promoting effects of RES on the apoptosis of AGS and HGC-27 cells were significantly reversed when blocking the PI3K-Akt signaling pathway using the LY294002. In vivo results showed that RES induced significant decrease of tumor volume and tumor weight without changing the body weight, or inducing significant cytotoxicities. Western blot analysis proved that RES could induce down-regulation of p-Akt and up-regulation of P53 in vivo. In conclusion, RES showed anti-cancer effects in GC by regulating the PI3K/Akt/P53 signaling pathway.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Resveratrol , Neoplasias Gástricas , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol/farmacologia , Transdução de Sinais , Estilbenos/farmacologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Neurol Sci ; 45(1): 155-169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37578631

RESUMO

OBJECTIVE: Our study aimed to explore the functional connectivity alterations between cortical nodes of resting-state networks in Parkinson's disease (PD) patients with wearing-off (WO) at different levels. METHODS: Resting-state functional magnetic resonance imaging was performed on 36 PD patients without wearing-off (PD-nWO), 30 PD patients with wearing-off (PD-WO), and 35 healthy controls (HCs) to extract functional networks. Integrity, network, and edge levels were calculated for comparison between groups. UPDRS-III, MMSE, MOCA, HAMA, and HAMD scores were collected for further regression analysis. RESULTS: We observed significantly reduced connectivity strength in the dorsal attention network and limbic network in the PD-WO group compared with the HC group. The PD-WO group showed a decreased degree of functional connectivity at 12 nodes, including the bilateral orbital part of the superior frontal gyrus, right olfactory cortex, left medial orbital part of the superior frontal gyrus, bilateral gyrus rectus, right parahippocampal gyrus, right thalamus, left Heschl's gyrus, right superior temporal gyrus part of the temporal pole, left middle temporal gyrus part of the temporal pole, and right inferior temporal gyrus. Furthermore, the PD-WO group showed a significantly lower degree of functional connectivity in the left orbital part of the superior frontal gyrus and right gyrus rectus than the PD-nWO group. Internetwork analysis indicated reduced functional connectivity in five pairs of resting-state networks. CONCLUSION: Our results demonstrated altered intra- and internetwork connections in PD patients with WO. These findings will facilitate a better understanding of the distinction between the network changes in PD pathophysiology.


Assuntos
Mapeamento Encefálico , Doença de Parkinson , Humanos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/diagnóstico por imagem , Córtex Pré-Frontal , Lobo Temporal
3.
J Neural Transm (Vienna) ; 128(1): 37-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33392827

RESUMO

Information about Parkinson's disease (PD) patients with severe COVID-19 is scarce. We aimed to analyze the clinical characteristics, outcomes, and risk factors affecting the prognosis of PD patients with severe COVID-19 infection. Clinical data of severe COVID-19 patients admitted at the Union Hospital, Wuhan between 28th January and 29th February 2020 were collected and analyzed. 10 patients (1.96%) had a medical history of PD with a mean (SD) age of 72.10 (± 11.46) years. The clinical characteristics and outcomes of severe COVID-19 with and without PD patients were then compared. There was no significant difference in overall mortality between the PD and non-PD patients with severe COVID-19 (p > 0.05). In PD patients with severe COVID-19, the proportion of patients with critical type, disturbance of consciousness, incidence of complications, white blood cells count and neutrophils counts on admission seem higher in the non-survivors. PD patients with older age, longer PD duration, and late stage PD may be highly susceptible to critical COVID-19 infection and bad outcome. The PD patients with consciousness disorders and complications that progressed rapidly are at increased risk of death.


Assuntos
COVID-19/epidemiologia , Transtornos da Consciência/epidemiologia , Doença de Parkinson/epidemiologia , Idoso , Idoso de 80 Anos ou mais , COVID-19/complicações , COVID-19/mortalidade , China/epidemiologia , Comorbidade , Transtornos da Consciência/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/mortalidade , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença
4.
J Integr Neurosci ; 18(4): 423-429, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31912701

RESUMO

This focus of our research is to investigate the protective effect of Baicalin on apoptosis and mTOR/AKT/GSK-3ß pathway in substantia nigra neurons in a rat model for Parkinson's disease, induced by 6-Hydroxydopamine. Thirty healthy female Sprague-Dawley rats were randomly divided into control group, model group, and Baicalin group. The Parkinson model was established by injecting 6-Hydroxydopamine into the right substantia nigra of rats in model and Baicalin group. The rats in Baicalin group were intragastrically administered with Baicalin (25 mg/kg/day) for four weeks. At the same time, the rats in control and model groups were intragastrically administered with equivalent solvents. We observed the rat turns, rotation speed and left forelimb usage. The protein expression levels of α-SYN, mTOR, AKT, and GSK-3ß in substantia nigra were detected by immunohistochemistry and Western blotting. Compared with model group, Baicalin significantly reduced the number of rotation speeds and neuron apoptosis (P < 0.001, respectively). However, the left forelimb use rate was notably increased after treatment with Baicalin (P < 0.001, respectively). Also, Baicalin decreased the expression levels of α-SYN, mTOR, AKT, and GSK-3ß in rats when compared with those in model group (P < 0.001, respectively).


Assuntos
Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Doença de Parkinson/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Flavonoides/administração & dosagem , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Oxidopamina/farmacologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/efeitos dos fármacos
5.
Can J Physiol Pharmacol ; 96(6): 611-617, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29505740

RESUMO

MicroRNA-146a (miR-146a) is reportedly implicated in the pathogenesis of ischemia-reperfusion (I/R) injury; however, its role in cerebral I/R injury is unclear and requires further investigation. In this study, cerebral I/R injury was established in mice via middle cerebral artery occlusion, and the expression of miR-146a was detected in the brain tissue via quantitative real-time PCR. We found that the expression of miR-146a was upregulated. Furthermore, the endogenous miR-146a was antagonized by its specific inhibitor. The results indicated that the inhibition of miR-146a deteriorated I/R-induced neurobehavioral impairment, exaggerated the infarct size, and exacerbated blood-brain barrier leakage. Cerebral I/R injury-induced generation of inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6, was further promoted by miR-146a inhibitor. The expression of interleukin-1 receptor associated kinase 1 (IRAK1), a target of miR-146a, was upregulated upon miR-146a inhibition. In addition, the nuclear factor κB (NF-κB) signaling pathway was over-activated when miR-146a was antagonized as manifested by the increased levels of phospho-NF-κB inhibitor α and nuclear p65. In summary, our findings demonstrate that the elevation of miR-146a may be one of the compensatory responses after the cerebral I/R injury and suggest miR-146a as a potential therapeutic target for cerebral I/R injury.


Assuntos
Isquemia Encefálica/complicações , Regulação Enzimológica da Expressão Gênica/genética , Quinases Associadas a Receptores de Interleucina-1/genética , MicroRNAs/genética , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Transdução de Sinais/genética
6.
Pestic Biochem Physiol ; 143: 207-213, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183594

RESUMO

Fluoroglycofen, a post-emergence herbicide used in vineyards to eradicate weeds, has previously been shown to turn grape leaves dark green following its use. Therefore, this study evaluates the relationship of dark green leaves with calcium form and subcellular distribution. To do this, we focused on the Ca2+ distribution and Ca2+-ATPase activity in leaf cells of one-year-old self-rooted Chardonnay grapevines treated with fluoroglycofen. Plants were separated into different treatments when they had seven or eight leaves, and different concentrations of fluoroglycofen were sprayed on the sand. The results showed that all of the soluble calcium content in the grape leaves that were treated with the highest concentration of fluoroglycofen (187.5gaiha-1) increased significantly. Specifically, the water-soluble organic acid calcium, pectate calcium, and calcium oxalate increased by 18.43%, 17.14%, and 31.05%, respectively, in the upper leaves than in the control. The subcellular distribution of Ca2+ in the dark green leaves increased significantly, especially in the cell wall and chloroplast, which increased by 25.54% and 24.10%, respectively. Through the ultrastructure localization of Ca2+ and Ca2+-ATPase contrasted with the control, the extracellular space and chloroplasts in the mesophyll cells of dark green leaves had large calcium pyroantimonate (Ca-PA) deposits. The extracellular space had fewer Ca2+-ATPase precipitation particles, whereas the chloroplasts had more. At the same time, a high concentration of fluoroglycofen decreased Ca2+-ATPase activity in grape leaves, which potentially might be due to disrupted regulation of calcium homeostatic mechanisms inside and outside of cells, resulting in a large number of Ca2+ accumulation in cells. The Ca2+ accumulation not only hindered the various cellular physiological reactions, but also caused leaves to become dark green in color.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Herbicidas/toxicidade , Hidrocarbonetos Halogenados/toxicidade , Nitrobenzoatos/toxicidade , Folhas de Planta/efeitos dos fármacos , Vitis/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Organelas/efeitos dos fármacos , Organelas/metabolismo , Organelas/ultraestrutura , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Vitis/metabolismo , Vitis/ultraestrutura
7.
Pestic Biochem Physiol ; 114: 102-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25175657

RESUMO

Fluoroglycofen and acetochlor are two different herbicides used in vineyards to eradicate weeds. This present study first characterized the effects of these chemicals on phenotype of grape leaves. Results showed that acetochlor caused the middle- and upper-node grape leaves become yellow at 60th day after treatment, while fluoroglycofen caused the ones became dark green. Then the effects of fluoroglycofen on photosynthetic pigments and chloroplast ultrastructure were characterized. Results showed that fluoroglycofen increased the chlorophyll and carotenoid contents by different extent in different node leaves, while it did not affect the net photosynthesis rate significantly. Chloroplast ultrastructure analysis showed that the gap between thylakoids layers in few chloroplasts of middle-node leaves increased, which was also observed in ones of upper-node leaves; the number and size of chloroplast increased. Analysis on the deformed leaves of grapevines treated with 375 g ai ha(-1) fluoroglycofen showed that the starch grain per cell was much more and larger than that in the same size control leaves; the dark green and yellow parts had more or fewer chloroplast than the control, respectively, but both with more grana per chloroplast and less layers per granum. Chloroplasts went larger and round. Taken together, these results suggested that fluoroglycofen caused the grape leaves become dark green, which might be associated with the changes of chloroplast; the growth inhibition in the second year might be due to accumulation of starch.


Assuntos
Herbicidas/toxicidade , Hidrocarbonetos Halogenados/toxicidade , Nitrobenzoatos/toxicidade , Folhas de Planta/efeitos dos fármacos , Toluidinas/toxicidade , Vitis/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Microscopia Eletrônica de Transmissão , Fenótipo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Vitis/metabolismo , Vitis/ultraestrutura
8.
Heliyon ; 10(13): e33836, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027505

RESUMO

Background: Studies has shown that N7-methylguanosine (m7G) modification plays a critical role in neurological diseases. However, the exact role and association of m7G with the immune microenvironment in Alzheimer's disease (AD) remain largely unknown and unexplored. Methods: The study datasets comprised 667 AD samples and 503 control samples selected from eight datasets in the Gene Expression Omnibus database; m7G regulator genes were obtained from previous literature. The AD subtypes were identified by consensus clustering analysis according to m7G regulator genes. The clinical characteristics, immune infiltration, and biological functions of the AD subgroups were evaluated. A combination of different types of machine-learning algorithms were used for the identification of AD genes. We also assessed and validated the diagnostic performance of the identified genes via qRT-PCR, immunofluorescence, and immunohistochemical analyses. Results: Two AD distinct subgroups, namely cluster A and cluster B, were identified. Cluster A had poor pathological progression and immune infiltration, representing a high-risk subgroup for AD. The differentially expressed genes of cluster A were enriched in immune and synapse-related pathways, suggesting that these genes probably contribute to AD progression by regulating immune-related pathways. Additionally, five feature genes (AEBP1, CARTPT, AK5, NPTX2, and COPG2IT1) were identified, which were used to construct a nomogram model with good ability to predict AD. The animal experiment analyses further confirmed that these feature genes were associated with AD development. Conclusion: To the best of our knowledge, this is the first study to reveal close correlations among m7G RNA modification, the immune microenvironment, and the pathogenesis of AD. We also identified five feature genes associated with AD, further contributing to our understanding of the underlying mechanisms and potential therapeutic targets for AD.

9.
Heliyon ; 10(7): e28618, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586389

RESUMO

Background: The aim of this study was to investigate the effect of DNA methylation of Fork Head Box O3 (FOXO3a) on the process of epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Methods: The expressions of FOXO3a, DNA methyltransferase 1 (DNMT1), METTL3, and EMT-related proteins (E-cadherin and N-cadherin) were measured. The influence of 5-Aza-dC and DNMT1 on the methylation level in the promoter region of FOXO3a was examined through the application of methylation-specific PCR (MSP). Chromatin immunoprecipitation (ChIP) was employed to detect binding between DNMT1 and the FOXO3a promoter. Methylated RNA immunoprecipitation (MeRIP) was utilized to evaluate the level of DNMT1 N6-methyladenosine (m6A) methylation. The assessment of cell viability and invasion abilities of A549 cells was performed using Cell Counting Kit-8 (CCK-8) and Transwell assays, respectively. NSCLC xenograft mouse models were established by subcutaneously injected treated A549 cells into nude mice. Results: The expression levels of DNMT1 and DNA methylation level FOXO3a were found to be significantly increased, whereas FOXO3a expression was considerably decreased in NSCLC cell lines and NSCLC tumor tissues. Both 5-Aza-dC treatment and DNMT1 knockdown resulted in the down-regulation of DNA methylation levels of FOXO3a while simultaneously up-regulating the expression of FOXO3a. A ChIP assay demonstrated that DNMT1 has the ability to bind to the promoter region of FOXO3a. Furthermore, the knockdown of DNMT1 promoted E-cadherin expression, but inhibited expression of N-cadherin, cell viability, and invasion ability. However, the knockdown of FOXO3a hindered the effect of DNMT1 knockdown on EMT, cell viability, and invasion ability of A549 cells. This was evidenced by decreased E-cadherin expression and increased N-cadherin expression, as well as increased cell viability and invasion ability. Increased expression of DNMT1 resulted from m6A methylation of DNMT1, which was mediated by METTL3. Overexpression of DNMT1 decreased of E-cadherin expression while increased N-cadherin expression, cell viability, and invasion ability in METTL3-shRNA treated A549 cells. In xenograft mouse models, DNMT1 knockdown significantly reduced tumor volumes and tumor weight. DNMT1 knockdown upregulated the expression of FOXO3a and E-cadherin, while downregulated N-cadherin expression in vivo. Conclusion: METTL3-mediated m6A methylation of DNMT1 up-regulates FOXO3a promoter methylation, thereby promoting the progression of NSCLC.

10.
Talanta ; 272: 125765, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38346358

RESUMO

The addition of reagents into preformed droplets is a crucial yet intricate task in droplet-based applications where sequential reactions is required. Pico-injection offers high throughput and robustness in accomplishing this task, but the existing pico-injection techniques work in an indiscriminate manner, making it difficult to target particular groups of droplets. Here we report image-activated pico-injection (imgPico) for label-free, on-demand reagent supplementation into droplets. The imgPico detects the droplets of interest by real-time image analysis and makes decisions for the downstream pico-injection operation. We studied the performance of different algorithms for the image analysis and optimized the experimental settings of the imgPico. In the validation experiment, the imgPico successfully injected fluorescent dyes into droplets encapsulating one, two, and three cells, respectively, as expected. We further demonstrated the utility of imgPico by targeting droplets encapsulating single cells in droplet-based single-cell RNA sequencing (scRNA-seq) using exceedingly high cell density, and the results showed that the imgPico effectively reduced the presence of doublets in the scRNA-seq data. With the merits of being label-free and versatile, the imgPico represents a technical advance with potential applications in single-cell analysis.


Assuntos
Algoritmos , Análise de Célula Única , Análise de Célula Única/métodos , Contagem de Células
11.
Cell Signal ; 118: 111125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432574

RESUMO

BACKGROUND: Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS: The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS: In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS: In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.


Assuntos
Discinesia Induzida por Medicamentos , Metformina , Humanos , Ratos , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Proteínas Quinases Ativadas por AMP , Células HEK293 , Qualidade de Vida , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Oxidopamina/uso terapêutico , Autofagia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Metformina/farmacologia , Modelos Animais de Doenças
12.
Behav Brain Res ; 454: 114609, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532003

RESUMO

AIM: Parkinson's disease is one of the most common neurodegenerative diseases. Excellent levodopa responsiveness has been proposed as a characteristic supporting feature in substantiating the PD diagnosis. However, a small portion of clinically established PD patients shows poor levodopa response. This study aims to investigate brain function alterations of PD patients with poor levodopa responsiveness by PET/MRI. METHOD: A total of 46 PD patients were recruited. They all completed 11C-CFT PET/MRI scans and the acute levodopa challenge test. Among these 46 PD patients, 42 participants further underwent 18F-FDG PET/MRI scans. Clinical variables regarding demographic data, disease features and cognition scales were also collected. Based on the improvement rate of UPDRS-III, PD patients were divided into non-responders (improvement rate < 33 %) and responders (improvement rate ≥ 33 %). Statistical parametric zapping was performed to analyze molecular imaging. Dopaminergic uptake and metabolism of 70 brain regions were converted to quantitative values and expressed as standard uptake value (SUV). SUV was further normalized by the cerebellum. The resulting SUV ratios and clinical variables were then compared by SPSS. RESULTS: The difference between levodopa non-responders (n = 17) and responders (n = 29) in the UPDRS III baseline was statistically significant and the former had a lower UPDRS III baseline (19 (10, 32), p<0.05). In contrast, no statistical difference between these two groups was found in age, gender, disease duration, cognition, motor subtype and Hoehn-Yahr stage. Dopaminergic uptake differences between levodopa non-responders (n = 17) and responders (n = 29) were shown in the left inferior frontal cortex (1.00 ± 0.09 vs 1.07 ± 0.08, p < 0.05 and FDR < 0.2), the right posterior cingulum (1.10 ± 0.10 vs 1.20 ± 0.13, p < 0.05 and FDR < 0.2) and the right insula (1.21 ± 0.12 vs 1.30 ± 0.10, p < 0.05 and FDR < 0.2). The metabolic alterations between levodopa non-responders (n = 16) and responders (n = 26) were shown in the right supplementary motor area (1.30 (1.18, 1.39) vs 1.41 (1.31, 1.53), p < 0.05 and FDR < 0.2), right precuneus (1.37 ± 0.10 vs 1.47 ± 0.18, p < 0.05 and FDR < 0.2), right parietal cortex (1.14 ± 0.15 vs 1.27 ± 0.21, p < 0.05 and FDR < 0.2), right supramarginal gyrus (1.16 (1.12, 1.26) vs 1.25 (1.14, 1.46), p < 0.05 and FDR < 0.2), right postcentral gyrus (1.15 (1.08, 1.32) vs 1.24 (1.17, 1.39), p < 0.05 and FDR < 0.2), medulla (0.75 ± 0.07 vs 0.80 ± 0.07, p < 0.05 and FDR < 0.2), right rolandic operculum (1.25 (1.18, 1.32) vs 1.33 (1.25, 1.50), p < 0.05 and FDR < 0.2), right olfactory (0.95 (0.91, 1.01) vs 1.01 (0.95, 1.15), p < 0.05 and FDR < 0.2), the right insula (1.15 (1.06, 1.22) vs 1.21 (1.12, 1.35), p < 0.05 and FDR < 0.2) and the left cerebellum crus (0.96 (0.91, 1.01) vs 0.92 (0.86, 0.96), p < 0.05 and FDR < 0.2). CONCLUSIONS: PD patients with poor response to levodopa showed less severe impairment of baseline motor symptoms, more severe dopaminergic deficits in the left inferior frontal, right posterior cingulate cortex and the right insula, and lower metabolism in the right supplementary motor area, right precuneus, right parietal cortex, right supramarginal gyrus, right postcentral gyrus, medulla, right rolandic operculum, right olfactory, the right insula and higher metabolism in the left cerebellum crus.


Assuntos
Levodopa , Doença de Parkinson , Humanos , Levodopa/uso terapêutico , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Dopamina , Imageamento por Ressonância Magnética/métodos
13.
Brain Imaging Behav ; 17(6): 725-737, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37735325

RESUMO

Our study aimed to investigate the grey matter (GM) changes using voxel-based morphometry (VBM) in Parkinson's disease (PD) patients with wearing-off (WO). 3D-T1-weighted imaging was performed on 48 PD patients without wearing-off (PD-nWO), 39 PD patients with wearing-off (PD-WO) and 47 age and sex-matched healthy controls (HCs). 3D structural images were analyzed by VBM procedure with Statistical Parametric Mapping (SPM12) to detect grey matter volume. Widespread areas of grey matter changes were found in patients among three groups (in bilateral frontal, temporal lobes, lingual gyrus, inferior occipital gyrus, right precuneus, right superior parietal gyrus and right cerebellum). Grey matter reductions were found in frontal lobe (right middle frontal gyrus, superior frontal gyrus and precentral gyrus), right parietal lobe (precuneus, superior parietal gyrus, postcentral gyrus), right temporal lobe (superior temporal gyrus, middle temporal gyrus), bilateral lingual gyrus and inferior occipital gyrus in PD-WO group compared with the PD-nWO group. Our results suggesting that wearing-off may be associated with grey matter atrophy in the cortical areas. These findings may aid in a better understanding of the brain degeneration process in PD with wearing-off.


Assuntos
Substância Cinzenta , Doença de Parkinson , Humanos , Substância Cinzenta/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/complicações , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal
14.
Heliyon ; 9(7): e18081, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483764

RESUMO

Background: The symptoms of early Parkinson's disease (PD) are complex and hidden. The aim of this study is to explore and summarize the characteristics of the symptoms of drug naïve patients with PD. Objectives: and Methods Drug-naïve patients with PD and age-matched healthy controls were recruited from the outpatient clinic of Wuhan Union Hospital. The motor and non-motor symptoms were evaluated for further analysis using Unified Parkinson's Disease Rating Scale (UPDRS) I, II, and III; Sniffin' Sticks Screening 12 test; Mini-Mental State Exam (MMSE); Montreal Cognitive Assessment (MoCA); Hamilton Anxiety Scale (HAMA); and Hamilton Depression Scale (HAMD) scores. The acute levodopa challenge test (ALCT) was adopted to assess the reaction to dopaminergic treatment. Results: We recruited 80 drug-naïve patients with PD and 40 age-matched healthy controls (HCs). Approximately 53.7% of the patients were females. The mean onset age was 59.96 ± 10.40 years. The mean UPDRS I, II, and III were 2.01 ± 1.90, 6.18 ± 3.68, and 26.13 ± 12.09, respectively. Compared with HCs, PD patients had lower scores in MMSE and MoCA; and higher scores in HAMA and HAMD (p < 0.05). In ALCT, 54 patients showed good responses to levodopa while 26 patients did not. The mean improvement rate of UPDRS III was 34.09% at 120 min. Conclusion: The motor symptoms of patients with early PD were mild but virous. They also suffered from different non-motor symptoms. In ALCT, about two thirds of patients (54/80) with early PD showed good response to levodopa. Among four aspects of motor symptoms, bradykinesia reacted best to ALCT, while axial symptoms were the worst.

15.
Neurochem Res ; 37(8): 1690-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22552474

RESUMO

Lipoxins have emerged as mediators of key events in endogenous anti-inflammation and resolution. However, the implication of these novel lipid mediators on neuroinflammation has not been investigated. Microglia is the major cells involved in brain tissue damage during infection and neurodegenerative diseases. One of the major features shared by neuroinflammation conditions is the increased production of reactive oxygen species (ROS) generated by NADPH oxidase activation. In this study, we have examined whether aspirin-triggered lipoxin A(4) (ATL) modulates ROS generation in BV2 cells. Pre-treatment of BV2 cells with ATL blocked ROS production triggered by LPS in the time-dependent and concentration-dependent manner. ATL inhibited the translocation of the cytoplasmic NADPH oxidase subunit p47(phox) to the cell membrane as well as NADPH oxidase activity. Taken together, these results demonstrate that ATL suppresses NADPH oxidase-mediated ROS generation in BV2 microglia cells, strongly indicating that ATL may play an important role against the development and progression of neuroinflammtion.


Assuntos
Aspirina/farmacologia , Lipoxinas/biossíntese , Microglia/metabolismo , NADPH Oxidases/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Lipopolissacarídeos/farmacologia , NADPH Oxidases/metabolismo
16.
Front Neurosci ; 16: 923708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937879

RESUMO

Massive cerebral infarction (MCI) is a devastating condition and associated with high rate of morbidity and mortality. Hemorrhagic transformation (HT) is a common complication after acute MCI, and often results in poor outcomes. Although several predictors of HT have been identified in acute ischemic stroke (AIS), the association between the predictors and HT remains controversial. Therefore, we aim to explore the value of texture analysis on magnetic resonance image (MRI) for predicting HT after acute MCI. This retrospective study included a total of 98 consecutive patients who were admitted for acute MCI between January 2019 and October 2020. Patients were divided into the HT group (n = 44) and non-HT group (n = 54) according to the follow-up computed tomography (CT) images. A total of 11 quantitative texture features derived from images of diffusion-weighted image (DWI) or T2-weighted-Fluid-Attenuated Inversion Recovery (T2/FLAIR) were extracted for each patient. Receiver operating characteristic (ROC) analysis were performed to determine the predictive performance of textural features, with HT as the outcome measurement. There was no significant difference in the baseline demographic and clinical characteristics between the two groups. The distribution of atrial fibrillation and National Institutes of Health Stroke Scale (NIHSS) were significantly higher in patients with HT than those without HT. Among the textural parameters extracted from DWI images, six parameters, f2 (contrast), f3 (correlation), f4 (sum of squares), f5 (inverse difference moment), f10 (difference variance), and f11 (difference entropy), differs significantly between the two groups (p < 0.05). Moreover, five of six parameters (f2, f3, f5, f10, and f11) have good predictive performances of HT with the area under the ROC curve (AUC) values of 0.795, 0.779, 0.791, 0.780, and 0.797, respectively. However, the texture features f2, f3, and f10 in T2/FLAIR images were the only three significant predictors of HT in patients with acute MCI, but with a relatively low AUC values of 0.652, 0.652, and 0.670, respectively. In summary, our preliminary results showed DWI-based texture analysis has a good predictive validity for HT in patients with acute MCI. Multiparametric MRI texture analysis model should be developed to improve the prediction performance of HT following acute MCI.

17.
Front Plant Sci ; 13: 929892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783936

RESUMO

Dormancy is a common survival strategy in plants to temporarily suspend visible growth under unsuitable conditions. The elaborate mechanism underlying bud break in perennial woody plants is gradually illustrated. Here, we identified a grape vine WRKY transcription factor, VvWRKY37, which was highly expressed in dormant buds. It was particularly induced by the application of exogenous abscisic acid, and depressed on exposure to gibberellin and low temperature (4°C) stress at the transcript level. The yeast one-hybrid assay confirmed that VvWRKY37 had a transcriptional activity. Ectopic over-expression of VvWRKY37 significantly delayed bud break of transgenic poplar plants. As an ABA-inducible gene, VvWRKY37 also depressed the expression of ABA catabolic gene CYP707As and enhanced the accumulation of endogenous ABA in transgenic poplar plants. The molecular pieces of evidence showed that VvWRKY37 preferentially recognized and bound W-box 5'-G/CATTGACT/C/G-3' cis-element in vitro. Additionally, VvABI5 and VvABF2 acted as the upstream transcriptional activators of VvWRKY37 via protein-DNA interactions. Taken together, our findings provided valuable insights into a new regulatory mechanism of WRKY TF by which it modulates bud break through ABA-mediated signaling pathways.

18.
Poult Sci ; 100(2): 993-997, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518153

RESUMO

A total of 480 male Cobb 500 broiler chicks were assigned to one of 6 dietary treatments to explore the energy equivalence of myo-inositol compared with dextrose. The 6 dietary treatments included a corn and soy-based control ration formulated with 5% anhydrous dextrose and 5 further diets that were generated by the sequential displacement of increments of 1% dextrose with myo-inositol. Each diet was fed to 8 replicate cages of 10 chicks per cage from day 8 to day 18 after hatch. The BW gain, feed intake, and feed conversion ratio (FCR) were measured, and on day 15 to day 17, excreta were collected to estimate the total tract nutrient retention. Ileal digestibility of nutrients and tibia mineral content was assessed on day 18. The displacement of dextrose with myo-inositol generated a significant linear reduction in the FCR that did not reach a plateau at 5% dietary inclusion of myo-inositol. There was no effect of the displacement of dextrose with myo-inositol on bone mineral concentration. However, supplemental myo-inositol linearly reduced ileal digestibility of DM, calcium, and ileal digestible energy. Myo-inositol addition resulted in a significant linear increase in the total tract retention of CP. It can be concluded that myo-inositol has an energy equivalence equal to approximately 78% of that of dextrose for young broiler chicks but exerts a range of extra caloric effects that improve feed efficiency and may influence nitrogen (N) retention and the uric acid cycle. Future work should focus on the role of phytase and myo-inositol on uric acid, creatine kinase, and other metabolites involved in renal function and biochemical flows of N in urine and feces in nonruminants.


Assuntos
6-Fitase , Ração Animal , Galinhas/fisiologia , Digestão/fisiologia , Inositol/administração & dosagem , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Osso e Ossos/química , Galinhas/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais , Glucose/administração & dosagem , Íleo/fisiologia , Masculino , Nutrientes , Distribuição Aleatória
19.
Plant Sci ; 311: 111008, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482911

RESUMO

The environmental damage caused by ozone is of increasing concern globally. The phosphoproteomics approach was used to explore the mechanisms underlying grapevine tolerance to ozone stress and identify phosphoproteins altered by ozone treatment. Results revealed that 194 of 2275 quantitatively analyzed phosphoproteins were significantly regulated after ozone treatment. Biological pathways related to transport were significantly enriched by the differentially regulated phosphoproteins. Among these phosphoproteins, the phosphorylation of RING E3 ligase in grape (V. vinifera KEEP ON GOING, VvKEG) decreased after ozone treatment. Over-expression of VvKEG in Arabidopsis decreased abscisic acid (ABA) sensitivity and enhanced ozone tolerance. Furthermore, VvKEG interacted with the ABA-responsive transcription factor ABSCISIC ACID-INSENSITIVE3 (ABI3). The exogenous application of ABA on grapevine leaves significantly influenced chlorophyll fluorescence, chlorophyll, and malondialdehyde (MDA) contents under ozone treatment; however, treatment with 150 µmol ABA aggravated ozone stress. These results indicate that phosphorylation modification provides information on ozone-induced processes and that VvKEG plays a critical role in these processes via regulation of the ABA signaling pathway in grape.


Assuntos
Adaptação Fisiológica/genética , Ozônio/efeitos adversos , Estresse Fisiológico/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Vitis/genética , Vitis/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Fosforilação , Proteômica
20.
Heliyon ; 7(6): e07237, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189296

RESUMO

Enzymes can aid in optimal feed stock utilization when used as feed additives. A range of toxicological studies were performed to evaluate the safety profile of a novel phytase (phytase HM) from Citrobacter b raakii produced in Aspergillus oryzae. Phytase HM was found to be non-mutagenic and non-clastogenic in in vitro tests. Further, the phytase HM preparation did not exhibit irritative potential to the eye and skin when applied in in vitro models. A 13-week subchronic toxicity study with oral administration of phytase HM to rats did not show any adverse effects. Efficacy studies showed that the dietary supplementation of this phytase significantly improved growth performance and bone mineralization in broiler chickens and piglets fed P-deficient diets, and increased retention of phosphorus (P) and calcium (Ca), and phytate-P degradation in excreta of broiler chickens in a dose-dependent manner. In conclusion, there are no safety concerns using phytase HM as a feed additive and the phytase is well tolerated by broiler chickens and pigs. Further, phytase HM improves with high efficacy the growth performance in both broiler chickens and pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA