Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486465

RESUMO

A method to measure the superficial velocity of the water phase in gas-water flow using an electromagnetic flowmeter (EMF) and rotating electric field conductance sensors (REFCSs) is introduced in this paper. An electromagnetic flowmeter instrument factor model is built and the correlation between electromagnetic flowmeter output and gas holdup in different flow patterns are explored through vertical upward gas-water flow dynamic experiments in a pipe with an inner diameter (ID) of 20 mm. Water superficial velocity is predicted based on pattern identification among bubble, churn, and slug flows. The experimental results show that water superficial velocity can be predicted fairly accurately for bubble, churn, and slug flows with a water cut higher than 60% (absolute average percentage deviation and absolute average deviation are 4.1057% and 0.0281 m/s, respectively). The output of the electromagnetic flowmeter is unstable and invalid in slug flows with a water cut below 60% due to the non-conducting gas slug is almost filling the pipe. Therefore, the electromagnetic flowmeter is not preferred to be used in such conditions.

2.
Sci Rep ; 6: 20052, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26833427

RESUMO

High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA