Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 61(7): 652-660, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508705

RESUMO

BACKGROUND: The ZFHX3 gene plays vital roles in embryonic development, cell proliferation, neuronal differentiation and neuronal death. This study aims to explore the relationship between ZFHX3 variants and epilepsy. METHODS: Whole-exome sequencing was performed in a cohort of 378 patients with partial (focal) epilepsy. A Drosophila Zfh2 knockdown model was used to validate the association between ZFHX3 and epilepsy. RESULTS: Compound heterozygous ZFHX3 variants were identified in eight unrelated cases. The burden of ZFHX3 variants was significantly higher in the case cohort, shown by multiple/specific statistical analyses. In Zfh2 knockdown flies, the incidence and duration of seizure-like behaviour were significantly greater than those in the controls. The Zfh2 knockdown flies exhibited more firing in excitatory neurons. All patients presented partial seizures. The five patients with variants in the C-terminus/N-terminus presented mild partial epilepsy. The other three patients included one who experienced frequent non-convulsive status epilepticus and two who had early spasms. These three patients had also neurodevelopmental abnormalities and were diagnosed as developmental epileptic encephalopathy (DEE), but achieved seizure-free after antiepileptic-drug treatment without adrenocorticotropic-hormone/steroids. The analyses of temporal expression (genetic dependent stages) indicated that ZFHX3 orthologous were highly expressed in the embryonic stage and decreased dramatically after birth. CONCLUSION: ZFHX3 is a novel causative gene of childhood partial epilepsy and DEE. The patients of infantile spasms achieved seizure-free after treatment without adrenocorticotropic-hormone/steroids implies a significance of genetic diagnosis in precise treatment. The genetic dependent stage provided an insight into the underlying mechanism of the evolutional course of illness.


Assuntos
Epilepsias Parciais , Proteínas de Homeodomínio , Espasmos Infantis , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Epilepsias Parciais/genética , Epilepsias Parciais/tratamento farmacológico , Sequenciamento do Exoma , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Mutação , Espasmos Infantis/genética , Drosophila
2.
Transl Pediatr ; 13(5): 705-715, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38840676

RESUMO

Background: The calcium-binding protein 4 (CABP4) gene is a newly identified epilepsy-related gene that might be associated with a rare type of genetic focal epilepsy; that is, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In vitro, mutant CABP4 causes an increased inward flow voltage of calcium ions and a significant increase in the electrical signal discharge in hippocampus neurons; however, the role of CABP4 in epilepsy has not yet been specifically described, and there is not yet a CABP4 mutant animal model recapitulating the epilepsy phenotype. Methods: We introduced a human CABP4 missense mutation into the C57BL/6J mouse genome and generated a knock-in strain carrying a glycine-to-aspartic acid mutation in the gene. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to evaluate the CABP4 expression level. Slice patch-clamp recording was carried out on pyramidal cells of prefrontal cortex layers II and III. Results: The CABP4G155D/+ mutant mice were viable and born at an expected Mendelian ratio. Surprisingly, the heterozygous (HE) mice did not display either an abnormal appearance or an overt seizure phenotype, and there was no statistically significant difference between the HE and wild-type (WT) mice in terms of overall messenger RNA (mRNA) and protein expression. However, the HE mutant mice showed an imbalance in the amount of protein expressed in the brain regions. Additionally, the patch-clamp recordings from the HE mouse layer II/III cortical pyramidal cells revealed an increase in the frequency of micro-excitatory post-synaptic currents (mEPSCs) but no change in the amplitude was observed. Conclusions: The findings of this study suggest that the CABP4 p.G155D mutation might be one of the mechanisms underlying seizure onset.

3.
Seizure ; 116: 87-92, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523034

RESUMO

OBJECTIVES: The APC2 gene, encoding adenomatous polyposis coli protein-2, is involved in cytoskeletal regulation in neurons responding to endogenous extracellular signals and plays an important role in brain development. Previously, the APC2 variants have been reported to be associated with cortical dysplasia and intellectual disability. This study aims to explore the association between APC2 variants and epilepsy. METHODS: Whole-exome sequencing (WES) was performed in cases (trios) with epilepsies of unknown causes. The damaging effects of variants were predicted by protein modeling and in silico tools. Previously reported APC2 variants were reviewed to analyze the genotype-phenotype correlations. RESULTS: Four pairs of compound heterozygous missense variants were identified in four unrelated patients with epilepsy without brain malformation/intellectual disability. All variants presented no or low allele frequencies in the controls. The missense variants were predicted to be damaging by silico tools, and affect hydrogen bonding with surrounding amino acids or decreased protein stability. Patients with variants that resulted in significant changes in protein stability exhibited more severe and intractable epilepsy, whereas patients with variants that had minor effect on protein stability exhibited relatively mild phenotypes. The previously reported APC2 variants in patients with complex cortical dysplasia with other brain malformations-10 (CDCBM10; MIM: 618677) were all truncating variants; in contrast, the variants identified in epilepsy in this study were all missense variants, suggesting a potential genotype-phenotype correlation. SIGNIFICANCE: This study suggests that APC2 is potentially associated with epilepsy without brain malformation/intellectual disability. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic heterogeneity.


Assuntos
Epilepsia , Deficiência Intelectual , Malformações do Desenvolvimento Cortical , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto , Fenótipo , Proteínas do Citoesqueleto/genética
5.
Front Mol Neurosci ; 16: 1290919, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249294

RESUMO

Background: The DLG3 gene encodes disks large membrane-associated guanylate kinase scaffold protein 3, which plays essential roles in the clustering of N-methyl-D-aspartate receptors (NMDARs) at excitatory synapses. Previously, DLG3 has been identified as the causative gene of X-linked intellectual developmental disorder-90 (XLID-90; OMIM# 300850). This study aims to explore the phenotypic spectrum of DLG3 and the genotype-phenotype correlation. Methods: Trios-based whole-exome sequencing was performed in patients with epilepsy of unknown causes. To analyze the genotype-phenotype correlations, previously reported DLG3 variants were systematically reviewed. Results: DLG3 variants were identified in seven unrelated cases with epilepsy. These variants had no hemizygous frequencies in controls. All variants were predicted to be damaging by silico tools and alter the hydrogen bonds with surrounding residues and/or protein stability. Four cases mainly presented with generalized seizures, including generalized tonic-clonic and myoclonic seizures, and the other three cases exhibited secondary generalized tonic-clonic seizures and focal seizures. Multifocal discharges were recorded in all cases during electroencephalography monitoring, including the four cases with generalized discharges initially but multifocal discharges after drug treating. Protein-protein interaction network analysis revealed that DLG3 interacts with 52 genes with high confidence, in which the majority of disease-causing genes were associated with a wide spectrum of neurodevelopmental disorder (NDD) and epilepsy. Three patients with variants locating outside functional domains all achieved seizure-free, while the four patients with variants locating in functional domains presented poor control of seizures. Analysis of previously reported cases revealed that patients with non-null variants presented higher percentages of epilepsy than those with null variants, suggesting a genotype-phenotype correlation. Significance: This study suggested that DLG3 variants were associated with epilepsy with/without NDD, expanding the phenotypic spectrum of DLG3. The observed genotype-phenotype correlation potentially contributes to the understanding of the underlying mechanisms driving phenotypic variation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA