Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cardiovasc Pharmacol ; 64(4): 345-56, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286360

RESUMO

Activating IK1 channels is considered to be a promising antiarrhythmic strategy. Zacopride has been identified as a selective IK1 channel agonist and can suppress triggered arrhythmias. Whether this drug also exerts a beneficial effect on cardiac remodeling is unknown, and the present study sought to address this question. Cardiac remodeling was induced through coronary ligation-induced myocardial infarction (MI) in male Sprague-Dawley rats. Zacopride (15 µg/kg) was administered (intraperitoneally) daily for 28 days after MI to determine whether it could attenuate MI-induced cardiac remodeling. A 4-week treatment with zacopride attenuated post-MI cardiac remodeling, as shown by the reduced left ventricular end-diastolic dimension and left ventricular end-systolic dimension and the increased ejection fraction and fractional shortening in zacopride-treated animals compared with animals treated with vehicle (all P < 0.05). Furthermore, zacopride significantly decreased myocardial collagen deposition, cardiomyocyte hypertrophy, the plasma level of brain natriuretic peptide, and cardiomyocyte ultrastructural injury. Zacopride also upregulated the expression of the IK1 channel protein and downregulated the expression of phosphorylated p70S6 kinase (p-p70S6K) and mTOR. These beneficial effects of zacopride were partially abolished by the IK1 channel blocker chloroquine. We conclude that the activation of IK1 channel by zacopride attenuates post-MI cardiac remodeling by suppressing mTOR-p70S6 kinase signaling.


Assuntos
Antiarrítmicos/uso terapêutico , Benzamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Remodelação Ventricular/efeitos dos fármacos , Animais , Antiarrítmicos/administração & dosagem , Benzamidas/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Cloroquina/sangue , Cloroquina/farmacologia , Ecocardiografia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Ratos Sprague-Dawley
2.
Front Pharmacol ; 10: 929, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507422

RESUMO

Intracellular Ca2+ overload, prolongation of the action potential duration (APD), and downregulation of inward rectifier potassium (IK1) channel are hallmarks of electrical remodeling in cardiac hypertrophy and heart failure (HF). We hypothesized that enhancement of IK1 currents is a compensation for IK1 deficit and a novel modulation for cardiac Ca2+ homeostasis and pathological remodeling. In adult Sprague-Dawley (SD) rats in vivo, cardiac hypertrophy was induced by isoproterenol (Iso) injection (i.p., 3 mg/kg/d) for 3, 10, and 30 days. Neonatal rat ventricular myocytes (NRVMs) were isolated from 1 to 3 days SD rat pups and treated with 1 µmol/L Iso for 24 h in vitro. The effects of zacopride, a selective IK1/Kir2.1 channel agonist, on cardiac remodeling/hypertrophy were observed in the settings of 15 µg/kg in vivo and 1 µmol/L in vitro. After exposing to Iso for 3 days and 10 days, rat hearts showed distinct concentric hypertrophy and fibrosis and enhanced pumping function (P < 0.01 or P < 0.05), then progressed to dilatation and dysfunction post 30 days. Compared with the age-matched control, cardiomyocytes exhibited higher cytosolic Ca2+ (P < 0.01 or P < 0.05) and lower SR Ca2+ content (P < 0.01 or P < 0.05) all through 3, 10, and 30 days of Iso infusion. The expressions of Kir2.1 and SERCA2 were downregulated, while p-CaMKII, p-RyR2, and cleaved caspase-3 were upregulated. Iso-induced electrophysiological abnormalities were also manifested with resting potential (RP) depolarization (P < 0.01), APD prolongation (P < 0.01) in adult cardiomyocytes, and calcium overload in cultured NRVMs (P < 0.01). Zacopride treatment effectively retarded myocardial hypertrophy and fibrosis, preserved the expression of Kir2.1 and some key players in Ca2+ homeostasis, normalized the RP (P < 0.05), and abbreviated APD (P < 0.01), thus lowered cytosolic [Ca2 +]i (P < 0.01 or P < 0.05). IK1channel blocker BaCl2 or chloroquine largely reversed the cardioprotection of zacopride. We conclude that cardiac electrical remodeling is concurrent with structural remodeling. By enhancing cardiac IK1, zacopride prevents Iso-induced electrical remodeling around intracellular Ca2+ overload, thereby attenuates cardiac structural disorder and dysfunction. Early electrical interventions may provide protection on cardiac remodeling.

3.
PLoS One ; 12(5): e0177600, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542320

RESUMO

Arrhythmogenesis in acute myocardial infarction (MI) is associated with depolarization of resting membraine potential (RMP) and decrease of inward rectifier potassium current (IK1) in cardiomyocytes. However, clinical anti-arrhythmic agents that primarily act on RMP by enhancing the IK1 channel are not currently available. We hypothesized that zacopride, a selective and moderate agonist of the IK1/Kir2.1 channels, prevents and cures acute ischemic arrhythmias. To test this viewpoint, adult Sprague-Dawley (SD) rats were subjected to MI by ligating the left main coronary artery. The antiarrhythmic effects of zacopride (i.v. infusion) were observed in the settings of pre-treatment (zacopride given 3 min prior to coronary occlusion), post-treatment (zacopride given 3 min after coronary occlusion) and therapeutic treatment (zacopride given 30 s after the onset of the first sustained ventricular tachycardia (VT)/ventricular fibrillation (VF) post MI). In all the three treatment modes, zacopride (15 µg/kg) inhibited MI-induced ventricular tachyarrhythmias, as shown by significant decreases in the premature ventricular contraction (PVC) and the duration and incidence of VT or VF. In Langendorff perfused rat hearts, the antiarrhythmic effect of 1 µmol/L zacopride were reversed by 1 µmol/L BaCl2, a blocker of IK1 channel. Patch clamp results in freshly isolated rat ventricular myocytes indicated that zacopride activated the IK1 channel and thereby reversed hypoxia-induced RMP depolarization and action potential duration (APD) prolongation. In addition, zacopride (1 µmol/L) suppressed hypoxia- or isoproterenol- induced delayed afterdepolarizations (DADs). In Kir2.x transfected Chinese hamster ovary (CHO) cells, zacopride activated the Kir2.1 homomeric channel but not the Kir2.2 or Kir2.3 channels. These results support our hypothesis that moderately enhancing IK1/Kir2.1 currents as by zacopride rescues ischemia- and hypoxia- induced RMP depolarization, and thereby prevents and cures acute ischemic arrhythmias. This study brings a new viewpoint to antiarrhythmic theories and provides a promising target for the treatment of acute ischemic arrhythmias.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/prevenção & controle , Benzamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Isquemia Miocárdica/complicações , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Potenciais de Ação/efeitos dos fármacos , Doença Aguda , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Benzamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Células CHO , Hipóxia Celular/efeitos dos fármacos , Cricetulus , Isoproterenol/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA