Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 11(23): 14085-14092, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35423906

RESUMO

The combination of zinc oxide (ZnO) and transition metal dichalcogenide (TMD) nanoparticles has higher photocatalytic efficiency and field emission performance than TMDs or ZnO, as well as significantly higher water cracking photocatalytic activity. By first-principles calculation, we investigated the structural and optoelectronic properties of the two-dimensional (2D) WS2/ZnO van der Waals (vdWs) heterostructure, and the regulation effect of biaxial strain. It is revealed that the conduction-band minimum (CBM) is lower than the reduction potential of water (EH+ /H2 ≈ -4.44 eV), and the valence-band maximum (VBM) is lower than the oxidation potential (E O2/H2O ≈ -5.67 eV), thus the heterostructure is a good oxidant in the water decomposition process, but cannot match the requirements for water reduction. By applying a -2% biaxial strain, the CBM is elevated to a position higher than the reduction potential of water, then the 2D vdWs WS2/ZnO heterostructure becomes a good material for the application of water reduction and other photovoltaic and photocatalytic devices.

2.
RSC Adv ; 11(6): 3209-3215, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424299

RESUMO

ZnO-based diluted magnetic semiconductors have high prospects in spintronics applications. In this study, the electronic and magnetic properties of Fe-doped MgZnO are studied by density functional theory calculations. The investigations of the band structure, total density of states, and projected density of states revealed a strong correlation between Mg and O atoms in addition to the magnetism and impurity level generated by the Fe atoms. In the spin charge density and band structure of 2.78% Fe-doped MgZnO, Fe atoms always cause paramagnetic coupling with oxygen atoms bonded around them, and when the initial magnetic moments were parallel, the band gap is broadened in the opposite channel. On the contrary, when the initial magnetic moments are anti-parallel, the band gap is narrowed in both the spin-up and spin-down channels. This shows that the initial magnetic moments have a great influence on the band structure, giving another way to tune the gap dynamically.

3.
J Chem Phys ; 133(12): 124706, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20886964

RESUMO

Identically sized Au clusters are grown on the Si(111)-(7×7) surface by room temperature deposition of Au atoms and subsequent annealing at low-temperature. The topographical images investigated by in situ scanning tunneling microscopy show a bias-dependent feature. The current-voltage properties measured by scanning tunneling spectroscopy indicate some semiconducting characteristics of the Au adsorbed surface, which is attributable to the saturation of Si dangling bonds. These experimental results, combined with the simulated scanning tunneling microscopy images and the first-principles adsorption energy calculations, show that the Au cluster is most likely to have a Au(6)Si(3) structure. In the Au(6)Si(3) cluster, three adsorbed Au atoms replace the three Si center adatoms, forming a hollow triangle, while the replaced Si atoms and other three Au atoms connect into a hexagon locating within the triangle. The formation mechanism of this atomic configuration is intimately associated with the complicated chemical valences of Au and the specific annealing conditions.

4.
J Chem Phys ; 130(2): 024701, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19154044

RESUMO

Identical-sized Zn nanoclusters have been grown on Si(111)-(7x7) surfaces at room temperature. In situ scanning tunneling microscopy (STM) studies and first-principles total energy calculations show that room-temperature grown Zn nanoclusters tend to form the seven-Zn-atom structure with one excess Zn atom occupying characteristically the center of the cluster. The evolution of the surface electronic structures measured by scanning tunneling spectroscopy reveals that the formation of Zn nanoclusters is responsible for the saturation of the metallic Si adatom dangling bond states at about -0.3 and +0.5 V and causes the semiconducting characteristics of the nanoclusters. Furthermore, the Zn nanocluster in a faulted half unit cell empties the filled surface dangling bond state of the closest edge Si adatoms in the nearest neighboring uncovered unfaulted half unit cells at about -0.3 V, leading to the suppressed height of the closest edge Si adatoms in the filled-state STM images.

5.
Nanoscale Res Lett ; 12(1): 551, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28952132

RESUMO

Wurtzite ZnO films were grown on MgO(111) substrates by plasma-assisted molecular beam epitaxy (MBE). Different initial growth conditions were designed to monitor the film quality. All the grown ZnO films show highly (0001)-oriented textures without in-plane rotation, as illustrated by in situ reflection high-energy electron diffraction (RHEED) and ex situ X-ray diffraction (XRD). As demonstrated by atomic force microscopy (AFM) images, "ridge-like" and "particle-like" surface morphologies are observed for the ZnO films grown in a molecular O2 atmosphere with and without an initial deposition of Zn adatoms, respectively, before ZnO growth with oxygen plasma. This artificially designed interfacial layer deeply influences the final surface morphology and optical properties of the ZnO film. From room-temperature photoluminescence (PL) measurements, a strong defect-related green luminescence band appears for the ZnO film with a "particle-like" morphology but was hardly observed in the films with flat "ridge-like" surface morphologies. Our work suggests that the ZnO crystallinity can be improved and defect luminescence can be reduced by designing interfacial layers between substrates and epilayers.

6.
Nanoscale Res Lett ; 12(1): 10, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28058644

RESUMO

ZnO/Si nanowire arrays with hierarchical architecture were synthesized by solution method with ZnO seed layer grown by atomic layer deposition and magnetron sputtering, respectively. The photocatalytic activity of the as-grown tree-like arrays was evaluated by the degradation of methylene blue under ultraviolet light at ambient temperature. The comparison of morphology, crystal structure, optical properties, and photocatalysis efficiency of the two samples in different seeding processes was conducted. It was found that the ZnO/Si nanowire arrays presented a larger surface area with better crystalline and more uniform ZnO branches on the whole sidewall of Si backbones for the seed layer by atomic layer deposition, which gained a strong light absorption as high as 98% in the ultraviolet and visible range. The samples were proven to have a potential use in photocatalyst, but suffered from photodissolution and memory effect. The mechanism of the photocatalysis was analyzed, and the stability and recycling ability were also evaluated and enhanced.

7.
Nanoscale ; 8(7): 4381-6, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26840981

RESUMO

Oxygen-polar ZnO films are grown in step flow mode by molecular beam epitaxy. Driven by the step flow anisotropy, the growth leads to the occurrence of specific hexagonal pits in the surface. The specific pits are formed by interlacing steps of the {10̄1̄4} facets, thus quenching the macroscopic dipole moment along the c-axis and satisfying the stabilization principles. Nitrogen (N) doping trials are then performed on the basis of the stable surface. In doping, growth remains in step flow mode but the step flow anisotropy vanishes, resulting in an obvious change of the surface morphology. Besides, a distinct acceptor state appears by in situ scanning tunneling spectroscopy analysis. First-principles calculations reveal that N readily substitutes for step-edge Zn and acts as NO2 adsorbed at the step edge. Desorption of the NO2 facilitates the formation of NO-VZn shallow acceptor complexes, which contributes to the appearance of the acceptor state. According to the peculiarities of N dopants on the O-polar surface, vicinal O-polar substrates (e.g., {10̄1̄4} substrate) are promising in ZnO : N due to the easily achieved step flow growth and high density of step edges for N incorporation.

8.
Nanoscale Res Lett ; 7(1): 184, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22405056

RESUMO

Polar and nonpolar ZnO thin films were deposited on MgO (001) substrates under different deposition parameters using oxygen plasma-assisted molecular beam epitaxy (MBE). The orientations of ZnO thin films were investigated by in situ reflection high-energy electron diffraction and ex situ X-ray diffraction (XRD). The film roughness measured by atomic force microscopy evolved as a function of substrate temperature and was correlated with the grain sizes determined by XRD. Synchrotron-based X-ray absorption spectroscopy (XAS) was performed to study the conduction band structures of the ZnO films. The fine structures of the XAS spectra, which were consistent with the results of density functional theory calculation, indicated that the polar and nonpolar ZnO films had different electronic structures. Our work suggests that it is possible to vary ZnO film structures from polar to nonpolar using the MBE growth technique and hence tailoring the electronic structures of the ZnO films.PACS: 81; 81.05.Dz; 81.15.Hi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA