Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 893, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752718

RESUMO

BACKGROUND: Parasitic insects are well-known biological control agents for arthropod pests worldwide. They are capable of regulating their host's physiology, development and behaviour. However, many of the molecular mechanisms involved in host-parasitoid interaction remain unknown. RESULTS: We sequenced the genomes of two parasitic wasps (Cotesia vestalis, and Diadromus collaris) that parasitize the diamondback moth Plutella xylostella using Illumina and Pacbio sequencing platforms. Genome assembly using SOAPdenovo produced a 178 Mb draft genome for C. vestalis and a 399 Mb draft genome for D. collaris. A total set that contained 11,278 and 15,328 protein-coding genes for C. vestalis and D. collaris, respectively, were predicted using evidence (homology-based and transcriptome-based) and de novo prediction methodology. Phylogenetic analysis showed that the braconid C. vestalis and the ichneumonid D. collaris diverged approximately 124 million years ago. These two wasps exhibit gene gains and losses that in some cases reflect their shared life history as parasitic wasps and in other cases are unique to particular species. Gene families with functions in development, nutrient acquisition from hosts, and metabolism have expanded in each wasp species, while genes required for biosynthesis of some amino acids and steroids have been lost, since these nutrients can be directly obtained from the host. Both wasp species encode a relative higher number of neprilysins (NEPs) thus far reported in arthropod genomes while several genes encoding immune-related proteins and detoxification enzymes were lost in both wasp genomes. CONCLUSIONS: We present the annotated genome sequence of two parasitic wasps C. vestalis and D. collaris, which parasitize a common host, the diamondback moth, P. xylostella. These data will provide a fundamental source for studying the mechanism of host control and will be used in parasitoid comparative genomics to study the origin and diversification of the parasitic lifestyle.


Assuntos
Genoma de Inseto , Mariposas/parasitologia , Vespas/genética , Animais , Genes de Insetos , Imunidade/genética , Família Multigênica , Filogenia , Vespas/classificação
2.
Dev Comp Immunol ; 81: 252-261, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29247722

RESUMO

Lysozyme is well-known as an immune effector in the immune system. Here we identified three genes including one c-type lysozyme, Btlysc, and two i-type lysozymes, Btlysi1 and Btlysi2, from the whitefly Bemisia tabaci. All three lysozymes were constitutively expressed in different tissues and developmental stages, but the two types of lysozymes showed different expression patterns. The expression levels of Btlysi1 and Btlysi2 were dramatically induced after the whitefly fed with different host plants while the expression level of Btlysc kept unchanged. After fungal infection and begomovirus acquisition, Btlysc expression was significantly upregulated while Btlysi1 and Btlysi2 expression were basically not induced. Furthermore, we found that Btlysc showed muramidase and antibacterial activities. Altogether, our results suggest that the two types of lysozymes act in two different ways in B. tabaci, that is, Btlysc is involved in the whitefly immune system while Btlysi1 and Btlysi2 may play a role in digestion or nutrition absorption.


Assuntos
Beauveria/imunologia , Begomovirus/imunologia , Infecções por Vírus de DNA/imunologia , Hemípteros/genética , Proteínas de Insetos/genética , Muramidase/genética , Micoses/imunologia , Isoformas de Proteínas/genética , Animais , Clonagem Molecular , Regulação da Expressão Gênica , Gossypium , Hemípteros/imunologia , Imunidade Inata , Proteínas de Insetos/metabolismo , Muramidase/metabolismo , Controle de Pragas , Isoformas de Proteínas/metabolismo , Transcriptoma
3.
Nat Commun ; 9(1): 2205, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880839

RESUMO

Parasitic wasps produce several factors including venom, polydnaviruses (PDVs) and specialized wasp cells named teratocytes that benefit the survival of offspring by altering the physiology of hosts. However, the underlying molecular mechanisms for the alterations remain unclear. Here we find that the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella, and its associated bracovirus (CvBV) can produce miRNAs and deliver the products into the host via different ways. Certain miRNAs in the parasitized host are mainly produced by teratocytes, while the expression level of miRNAs encoded by CvBV can be 100-fold greater in parasitized hosts than non-parasitized ones. We further show that one teratocyte-produced miRNA (Cve-miR-281-3p) and one CvBV-produced miRNA (Cve-miR-novel22-5p-1) arrest host growth by modulating expression of the host ecdysone receptor (EcR). Altogether, our results show the first evidence of cross-species regulation by miRNAs in animal parasitism and their possible function in the alteration of host physiology during parasitism.


Assuntos
Interações Hospedeiro-Parasita/genética , MicroRNAs/fisiologia , Mariposas/crescimento & desenvolvimento , Parasitos/genética , Polydnaviridae/genética , Vespas/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/genética , Larva/virologia , Mariposas/parasitologia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Vespas/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA