Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neural Netw ; 175: 106291, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593557

RESUMO

This paper considers a distributed constrained optimization problem over a multi-agent network in the non-Euclidean sense. The gossip protocol is adopted to relieve the communication burden, which also adapts to the constantly changing topology of the network. Based on this idea, a gossip-based distributed stochastic mirror descent (GB-DSMD) algorithm is proposed to handle the problem under consideration. The performances of GB-DSMD algorithms with constant and diminishing step sizes are analyzed, respectively. When the step size is constant, the error bound between the optimal function value and the expected function value corresponding to the average iteration output of the algorithm is derived. While for the case of the diminishing step size, it is proved that the output of the algorithm uniformly approaches to the optimal value with probability 1. Finally, as a numerical example, the distributed logistic regression is reported to demonstrate the effectiveness of the GB-DSMD algorithm.


Assuntos
Algoritmos , Redes Neurais de Computação , Processos Estocásticos , Simulação por Computador , Modelos Logísticos
2.
Materials (Basel) ; 17(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612110

RESUMO

Based on the previous research on the energy absorption of foam metal materials with different structures, a composite blast-resistant energy-absorbing material with a flexible core layer was designed. The material is composed of three different fiber materials (carbon fiber, aramid fiber, and glass fiber) as the core layer and foamed iron-nickel metal as the front and rear panels. The energy absorption characteristics were tested using a self-built gas explosion tube network experimental platform, and the energy absorption effects of different combinations of blast-resistant materials were analyzed. The purpose of this paper is to evaluate the performance of blast-resistant materials designed with flexible fiber core layers. The experimental results show that the composite structure blast-resistant material with a flexible core layer has higher energy absorption performance. The work performed in this paper shows that the use of flexible core layer materials has great research potential and engineering research value for improving energy absorption performance, reducing the mass of blast-resistant materials, and reducing production costs. It also provides thoughts for the research of biomimetic energy-absorbing materials.

3.
J Colloid Interface Sci ; 671: 110-123, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38795532

RESUMO

Herein, a novel rich oxygen vacancy (Ov) cobalt-iron hydrotalcite composite cobalt metal-organic framework material (ZIF-67/CoFe-LDH) was prepared by simple urea water and heat reduction approach and utilized for the peroxymonosulfate (PMS) system to remove sulfamethoxazole (SMX). 95 ± 1.32 % SMX (20 mg/L) was able to degraded in 20 min with TOC removal of 53 ± 1.56 % in ZIF-67/CoFe-LDH/PMS system. The system maintained a fantastic catalytic capability with wide pH range (3-9) and common interfering substances (Cl-, NO3-, CO32-, PO42- and humic acid (HA)), and the degradation efficiency could even remain 80.2 ± 1.48 % at the fifth cycle. Meanwhile, the applicability and feasibility of the catalysts for practical water treatment was verified by the degradation effects of SMX in different water environments and several other typical pollutants. Co and Fe bimetallic active centers synergistically activate PMS, and density functional theory (DFT) predicted adsorption energy about Ov in ZIF-67/CoFe-LDH for PMS was 1.335 eV, and OO bond length of PMS was stretched to 1.826 Å. As a result, PMS was more easily activated and broken, which accelerated the singlet oxygen (1O2), sulfate radical (SO4•-), high-valent metals and other reactive oxygen species (ROS). Radical and non-radical jointly degrading the pollutants improved the catalytic effect. Finally, SMX degradation intermediates were analyzed to explain the degradation pathway and their biotoxicity was also evaluated. This paper provides a new research perspective of oxygen vacancy activating PMS to degrade pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA