Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Opt Express ; 32(5): 8101-8121, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439476

RESUMO

It is extremely challenging to rapidly and accurately extract target echo photon signals from massive photon point clouds with strong background noise without any prior geographic information. Herein, we propose a fast surface detection method realized by combining the improved density-dimension algorithm (DDA) and Kalman filtering (KF), termed the DDA-KF algorithm, for photon signals with a high background noise rate (BNR) to improve the extraction of surface photon signals from spacecraft platforms. The results showed that the algorithm exhibited good adaptability to strong background noise and terrain slope variations, and had real-time processing capabilities for massive photon point clouds in large-scale detection range without prior altitude information of target. Our research provides a practical technical solution for single-photon lidar applications in deep space navigation and can help improve the performance in environments characterized by strong background noise.

2.
Skin Pharmacol Physiol ; 31(5): 229-237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29847822

RESUMO

AIMS: To elucidate the possible mechanisms of how basic fibroblast growth factor (bFGF) influences epidermal homeostasis in a living skin equivalent (LSE) model. METHODS: Several wound healing-related growth factors were analyzed at protein and mRNA levels for dermal fibroblasts of induced alpha-smooth muscle actin (α-SMA)-positive or α-SMA-negative phenotypes. During culturing an LSE model by seeding normal human keratinocytes on a fibroblast-populated type I collagen gel, bFGF or neutralizing antibody for keratinocyte growth factor (KGF) was added to investigate its effects on fibroblast phenotypes and, subsequently, epidermal homeostasis by histology and immunohistochemistry. RESULTS: The α-SMA-positive phenotype of fibroblasts induced by transforming growth factor beta-1 (TGF-ß1) markedly suppressed the expression of KGF and hepatocyte growth factor (HGF), and slightly upregulated vascular endothelial growth factor (VEGF) and TGF-ß1 at mRNA and protein levels, compared with α-SMA-negative fibroblasts treated with bFGF. α-SMA expression of fibroblasts at the epidermal-mesenchymal junction of the LSEs was suppressed by the addition of bFGF, and a better-differentiated epidermis was presented. The abrogation of KGF from fibroblasts by the addition of the KGF neutralizing antibody disenabled the LSE culturing system to develop an epidermis. CONCLUSIONS: bFGF, through affecting the phenotypes and functions of fibroblasts, especially KGF expression, influenced epidermal homeostasis in an LSE model.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Actinas/metabolismo , Células Cultivadas , Fator 7 de Crescimento de Fibroblastos/genética , Fibroblastos/metabolismo , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Fenótipo , Pele/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Cell Tissue Res ; 365(1): 113-22, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26837225

RESUMO

We have examined the changes of keratins and alpha-SMA at various time points in order to investigate the development and differentiation of eccrine sweat gland cells during the course of three-dimensional (3D) reconstitution. Mixtures of eccrine sweat gland cells and Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 1, 2, 4, 6, 8, 14, 21, 28, 35, and 42 days post-implantation, Matrigel plugs were removed and immunostained. We found that during 3D reconstitution, keratin and alpha-SMA expression changed in a time-dependent manner. At day 1, all cells stained positively for keratin isoforms K5, K14, and K15, with the staining intensity of K15 being weak and K5 and K14 being strong, but none of the cells displayed K7, K8, or alpha-SMA. As time progressed, spheroid-like structures formed with the inner layer acquiring K7 and K8, but losing K5 and K14 expression, and the outer layer acquiring alpha-SMA expression, but losing K15 expression. K8 expression was first noted at day 14, and K7 and alpha-SMA at day 21. The loss of K15 expression was first noted at day 14, K14 at day 21, and K5 at day 28. At 28, 35, and 42 days, the spheroid-like structures could be distinguished, by immunohistochemistry, as having secretory coil-like and coiled duct-like structures. We conclude that the changes in expression of keratins and alpha-SMA in 3D-reconstituted eccrine sweat glands are similar to those of native eccrine sweat glands, indicating that the 3D reconstitution of sweat glands provides an excellent model for studying the development, cytodifferentiation, and regulation of eccrine sweat glands.


Assuntos
Actinas/metabolismo , Glândulas Écrinas/metabolismo , Queratinas/metabolismo , Técnicas de Cultura de Tecidos , Animais , Células Cultivadas , Humanos , Camundongos Nus , Adulto Jovem
4.
Exp Neurol ; 365: 114408, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37061176

RESUMO

BACKGROUND: Mounting evidence indicates that stem cell-derived exosomal miRNAs have therapeutic effects on traumatic brain injury (TBI). This research is focused on exploring the molecular processes of miR-124-3p obtained from bone marrow stromal cells-derived exosomes (BMSCs-Exos) in attenuating posttraumatic glutamate-mediated excitotoxicity. METHODS: We created a TBI rat model and analyzed the expression profile of miRNA through miRNA microarray. The miR-124-3p and p38 MAPK levels were analyzed utilizing RT-qPCR and western blotting. Dual-luciferase reporter (DLR) assay showed the targeting relationship between miR-124-3p and p38 MAPK. We subsequently conducted a TUNEL assay and flow cytometry to evaluate the neuronal apoptotic rate in an in vitro glutamate-mediated excitotoxicity model treated with BMSCs-Exos enriched with miR-124-3p (BMSCs-ExosmiR-124-3p). Moreover, the levels of p38 MAPK and glutamate transporter-1 (GLT-1) were measured by western blotting. Furthermore, BMSCs-ExosmiR-124-3p were administered to the TBI rats, and their neuroprotective effects were observed using western blotting, immunohistochemistry, histological staining, magnetic resonance imaging (MRI), and Morris water maze (MWM). RESULTS: The results revealed that the brains of TBI rats exhibited lowered miR-124-3p and enhanced p38 MAPK levels. DLR assay demonstrated miR-124-3p's role in targeting p38 MAPK and negatively regulating its expression. In vitro and in vivo studies confirmed that BMSCs-ExosmiR-124-3p attenuated glutamate-mediated excitotoxicity by downregulating p38 MAPK and upregulating GLT-1 expressions via transferring exosomal miR-124-3p. Moreover, histopathological evaluation and MRI results showed that BMSCs-ExosmiR-124-3p remarkably alleviated neuronal cell death and minimized the lesion volumes post-TBI. MWM outcomes illustrated that BMSCs-ExosmiR-124-3p treatment could substantially improve neurological function post-TBI. Furthermore, the effects of treatment with p38 MAPK inhibitor SB203580 were similar to BMSCs-ExosmiR-124-3p. CONCLUSION: Overall, the outcomes of the current report highlighted that BMSCs-ExosmiR-124-3p can lead to the upregulation of GLT-1 in TBI rat models by inhibiting the p38 MAPK signaling pathway, hence alleviating glutamate-mediated excitotoxicity and attenuating neurological damage post-TBI.


Assuntos
Lesões Encefálicas Traumáticas , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Animais , Exossomos/metabolismo , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Lesões Encefálicas Traumáticas/patologia , Glutamatos/metabolismo
5.
Exp Neurol ; 357: 114182, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35901975

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is one of the major contributors to disability and death worldwide. Glutamate-mediated excitotoxicity, one of the secondary injuries occurring after TBI, leads to extreme neuronal apoptosis, and can be a potential target for intervention. Bone marrow mesenchymal stem cells-derived exosomes (BMSCs-Exos) have demonstrated neuroprotective effects on TBI. However, their precise role and the underlying mechanism by which they regulate glutamate-mediated excitotoxicity have not yet been determined. Therefore, this study aimed to determine whether BMSCs-Exos alleviate glutamate excitotoxicity post-TBI and their associated mechanism. METHODS: BMSCs-Exos were extracted from the BMSCs incubation medium and identified by transmission electron microscopy, nanoparticle trafficking analysis, and western blotting. The neuroprotective effects of BMSCs-Exos on glutamate excitotoxicity were investigated in the glutamate-mediated excitotoxicity neuronal cell model and the TBI rat model (TBI induced by controlled cortical impact) using western blotting and TUNEL assay. Cortical lesion samples were collected post-TBI on day-1 and day-14 to study histology. In addition, cortical lesion volume on days 1, 3 and 7 following TBI was determined using T2-weighted magnetic resonance imaging (MRI), and cognitive function was assessed at 4 weeks following TBI using the Morris water maze (MWM) test. RESULTS: BMSCs-Exos were observed to be spherical with a mean diameter of 109.9 nm, and expressed exosomal markers CD9, CD81 and TSG101. BMSCs-Exos were efficiently endocytosed by astrocytes after co-incubation for 24 h. In vitro studies revealed that 125 µM of glutamate significantly induced neuronal apoptosis, which was attenuated by BMSCs-Exos in astrocyte-neuron co-cultures. This attenuation was mediated by the upregulation of glutamate transporter-1 (GLT-1) level and the downregulation of p-p38 MAPK level in astrocytes. Similar results were obtained in vivo, wherein we verified that PKH67-labeled BMSCs-Exos administered intravenously could reach the perilesional cortex crossing the blood-brain barrier and significantly reduce glutamate levels in the perilesional cortex of the TBI rat, accompanied by increased GLT-1 level and downregulation in p-p38 MAPK level. Additionally, western blotting and TUNEL staining also revealed that BMSCs-Exos significantly downregulated the expression of pro-apoptosis markers, including cleaved caspase-3 and cleaved caspase-9, and attenuated neuronal apoptosis following TBI. Immunohistochemical analysis and Nissl staining showed that BMSCs-Exos significantly increased GLT-1-positive cells, and the number of apoptotic neurons decreased in the perilesional cortex. Moreover, MRI and MWM results revealed that BMSCs-Exos significantly minimized cortical lesion volume and ameliorated cognitive function after TBI. The underlying neuroprotective mechanism of BMSCs-Exos may be due to an increase in GLT-1 level in astrocytes by blocking the p38 MAPK signaling pathway. CONCLUSION: Taken together, our findings demonstrate that the implementation of BMSCs-Exos may be an effective prospective therapy for attenuating post-TBI neurological damage.


Assuntos
Lesões Encefálicas Traumáticas , Exossomos , Células-Tronco Mesenquimais , Fármacos Neuroprotetores , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Exossomos/metabolismo , Ácido Glutâmico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fármacos Neuroprotetores/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
J Appl Biomater Funct Mater ; 19: 22808000211035061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34519565

RESUMO

BACKGROUND: Human umbilical cord mesenchymal stem cells (HuMSCs) injected directly have been proven effective for improving chronic wounds. However, HuMSCs largely die within 14 days. The aim of study is to establish a cellularly modified gelatin sponge and investigate its characteristics and clinical potential. METHODS: HuMSCs were isolated, expanded and seeded in a poly-L-lysine (PLL)-coated gelatin sponge. Fabricated gelatin sponges were estimated through observation of morphological surface and ultrastructure, following confirmed by histology method. Supernatants were collected at different times for enzyme-linked immunosorbent assays (ELISAs) to measure growth factors. The cell embedded gelatin sponges were implanted subcutaneously on the backs of mice and the samples were harvested and studied histologically. RESULTS: HuMSCs gradually modified the gelatin sponge by depositing collagen and hyaluronic acid, and degrading the structure of gelatin, resulting in a dense, and elastic structure. Compared with cells cultured in monolayer, the levels of growth factors increased remarkably when HuMSCs were cultivated in the gelatin sponge. Upon subcutaneous implantation in the backs of mice, the cellularized gelatin sponges persisted for up to 2 months and eventually integrated into the host tissue, while blank gelatin sponges degraded completely by the end of the second month. CONCLUSION: Gelatin sponge is a clinically accessible scaffold for HuMSCs implantation to maintain short-term survival of the cells and high-level production of growth factors, which demonstrates good clinical potential for enhancing wound healing.


Assuntos
Colágeno , Gelatina , Animais , Ácido Hialurônico , Camundongos , Cicatrização
7.
Front Aging Neurosci ; 13: 618690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815088

RESUMO

A correlation between the abnormal cerebral glucose metabolism and the progression of Alzheimer's disease (AD) has been found in previous studies, suggesting that glucose alterations may be used to predict the histopathological diagnosis in AD. In this study, we investigated the dynamic changes of cerebral glucose uptake in vivo using MR glucose chemical exchange saturation transfer (glucoCEST) imaging in a rat model of AD with an intracerebroventricular (i.c.v) injection of amyloid Aß-protein (25-35), confirmed by Morris water maze and Nissl staining. In total, 6 rats in the AD group and 6 rats in the control group that were given an injection of sterile normal saline were included. At 28 days after injection, all rats performed a 7.0 T MR exanimation, including glucoCEST, diffusion tensor imaging (DTI) and hippocampus magnetic resonance spectra (MRS), to detect the possible metabolic and structural changes in the rat brain. A significantly elevated brain glucoCEST signal in the brain of AD rats was observed, and a decreased brain glucose uptake was also explored during the progression of glucose infusion compared with those in rats of the control group. In addition, there is a significant positive correlation between glucoCEST enhancement (GCE) and myo-Inosito (Ins) in the AD group and the control group (P < 0.05). A significantly reduced number of neurons in the cortex and hippocampus in AD rats combined with the significantly longer escape and a decreased number of crossings were verified at 28 days after Aß25-35 injection by Nissl staining and Morris water maze, respectively. Our results indicated that an abnormal brain glucose mechanism in AD rats could be detected by glucoCEST imaging, suggesting a new method to explore the occurrence and progress of diabetes-related AD or dementia.

8.
Am J Transl Res ; 12(7): 3715-3727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774729

RESUMO

Environmental estrogens (EEs) have been correlated with abnormalities in the male urogenital system. However, the mechanism underlying the effect of these molecules remains unclear. In vitro and in vivo experiments were performed to examine the expression level and mechanism of relaxin family peptide receptor 2 (RXFP2) in the gubernaculum of fetal mice following diethylstilbestrol (DES) treatment. The in vivo results demonstrate that DES treatment increased the stillbirth rate gradually, decreased the gubernacular cone volume significantly, and disrupted the tissue structure, leading to incomplete testicular descent. In vitro experiments reveal that DES administration resulted in abnormal cellular morphology and structural disorder of gubernacular cells, which lost their original morphology in a dose-dependent manner. Moreover, DES-induced F-actin rearrangement and stress fiber formation in cultured cells. Protein quantitative analysis showed that the RXFP2 level in each experimental group was significantly lower than that of the normal group. In conclusion, DES affects the morphology and alters the gubernaculum structure, as well as the expression of RXFP2 protein. These data demonstrate that DES is toxic to gubernaculum in fetal mice, and that RXFP2 is associated with the abnormal gubernaculum morphology induced by DES. Taken together, these data suggest that RXFP2 may be a novel potential biomarker for abnormal differentiation of the gubernaculum.

9.
Mech Dev ; 162: 103609, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32407762

RESUMO

BACKGROUND: Recent studies have shown that lipid metabolism was abnormal during the formation of cleft palate. However, the composition of these lipid species remains unclear. OBJECTIVE: Aims of this study were to identify the lipid species components and reveal the key lipid metabolic disorders in cleft palate formation. METHODS: The pregnant mice were divided into experimental group exposed to all-trans retinoic acid (RA-treated group) (n = 12) and control group (n = 12) at embryonic gestation day 10.5 (E0.5). The component of the palatal tissue metabolome was analyzed using a LCMS-based nontargeted lipidomics approach. Multivariate statistical analysis was then carried out to assess the differences between the RA-treated group and the control group. RESULTS: Twenty-nine lipid species were found to discriminate between RA-treated and control embryos. Among them, 28 lipid species increased and 1 lipid species decreased in the RA-treated group. Among these lipids, 13 were triglycerides, 9 were PEs, 3 were PCs, 2 were PSs, 2 were DGs. Further analysis of the number of carbons and unsaturated bond of triglycerides showed that TGs with high unsaturated bonds constituted a higher fraction in the RA-treated group. A higher amount of triglycerides containing 52, 54, 56, 58, 60 carbons, and 1 to 8 unsaturated bonds. Of note, under RA treatment, TG 50:1, 52:2, 56:6and 60:8 became the most prominent. CONCLUSION: Lipid metabolism is significantly different in the formation of cleft palate induced by RA, and the unsaturated triglycerides increased in the RA-treated group may play an important role in the formation of cleft palate.


Assuntos
Fissura Palatina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Animais , Fissura Palatina/tratamento farmacológico , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica/métodos , Lipídeos , Camundongos , Gravidez , Tretinoína/farmacologia , Triglicerídeos/metabolismo
10.
ACS Chem Neurosci ; 10(1): 649-657, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30346712

RESUMO

Glutamate excitoxicity plays a crucial role in the pathophysiology of traumatic brain injury (TBI) through the initiation of secondary injuries. Glutamate chemical exchange saturation transfer (GluCEST) MRI is a newly developed technique to noninvasively image glutamate in vivo with high sensitivity and spatial resolution. The aim of the present study was to use a rat model of TBI to map changes in brain glutamate distribution and explore the capability of GluCEST imaging for detecting secondary injuries. Sequential GluCEST imaging scans were performed in adult male Sprague-Dawley rats before TBI and at 1, 3, 7, and 14 days after TBI. GluCEST% increased and peaked on day 1 after TBI in the core lesion of injured cortex and peaked on day 3 in the ipsilateral hippocampus, as compared to baseline and controls. GluCEST% gradually declined to baseline by day 14 after TBI. A negative correlation between the GluCEST% of the ipsilateral hippocampus on day 3 and the time in the correct quadrant was observed in injured rats. Immunolabeling for glial fibrillary acidic protein showed significant astrocyte activation in the ipsilateral hippocampus of TBI rats. IL-6 and TNF-α in the core lesion peaked on day 1 postinjury, while those in the ipsilateral hippocampus peaked on day 3. These subsequently gradually declined to sham levels by day 14. It was concluded that GluCEST imaging has potential to be a novel neuroimaging approach for predicting cognitive outcome and to better understand neuroinflammation following TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Mapeamento Encefálico , Córtex Cerebral/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos , Ratos Sprague-Dawley
11.
Front Aging Neurosci ; 11: 217, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507405

RESUMO

Amyloid-ß (Aß) deposits and some proteins play essential roles in the pathogenesis of Alzheimer's disease (AD). Amide proton transfer (APT) imaging, as an imaging modality to detect tissue protein, has shown promising features for the diagnosis of AD disease. In this study, we chose 10 AD model rats as the experimental group and 10 sham-operated rats as the control group. All the rats underwent a Y-maze test before APT image acquisition, using saturation with frequency alternating RF irradiation (APTSAFARI) method on a 7.0 T animal MRI scanner. Compared with the control group, APT (3.5 ppm) values of brain were significantly reduced in AD models (p < 0.002). The APTSAFARI imaging is more significant than APT imaging (p < 0.0001). AD model mice showed spatial learning and memory loss in the Y-maze experiment. In addition, there was significant neuronal loss in the hippocampal CA1 region and cortex compared with sham-operated rats. In conclusion, we demonstrated that APT imaging could potentially provide molecular biomarkers for the non-invasive diagnosis of AD. APTSAFARI MRI could be used as an effective tool to improve the accuracy of diagnosis of AD compared with conventional APT imaging.

12.
Acta Histochem ; 119(6): 620-623, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28689642

RESUMO

Secretory coils of eccrine sweat glands are composed of myoepithelial cells, dark secretory cells and clear secretory cells. The two types of cells play important roles in sweat secretion. In our previous study, we demonstrated that the 3D-reconstituted eccrine sweat gland cell spheroids differentiate into secretory coil-like structures. However, whether the secretory coil-like structures further differentiate into dark secretory cells and clear secretory cells were is still unknown. In this study, we detected the differentiation of clear and dark secretory cells in the 3D-reconstituted eccrine sweat gland cell spheroids using the dark secretory cell-specific marker, GCDFP-15, and clear secretory cell-specific marker, CAII by immunofluorescence staining. Results showed that there were both GCDFP-15- and CAII-expressing cells in 12-week-old 3D spheroids, similar to native eccrine sweat glands, indicating that the spheroids possess a cellular structure capable of sweat secretion. We conclude that the 12-week 3D spheroids may have secretory capability.


Assuntos
Anidrase Carbônica II/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular , Ducto Cístico , Glândulas Écrinas/citologia , Células Epiteliais/citologia , Glicoproteínas/metabolismo , Esferoides Celulares , Ducto Cístico/citologia , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Imunofluorescência , Humanos , Proteínas de Membrana Transportadoras , Suor/metabolismo
13.
J Mol Histol ; 48(1): 1-7, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27787633

RESUMO

To investigate the development of eccrine sweat glands and the expression of Foxa1 genes and proteins in the course of development, the footpads from E15.5 to E21.5, P1-P12, P14, P21, P28 and P56 rats were subjected to immunofluorescence staining of FoxA1 and double immunofluorescence staining of K14/α-SMA, FoxA1/K7 and FoxA1/α-SMA, and were processed for Foxa1 gene detection by RT-qPCR. The results showed that rat eccrine sweat gland germs was first observed emerging from the basal layer of epidermis at E19.5, and then elongated downward into the dermis, forming straight ducts by E21.5. Early development of the secretory segments appeared at P1. The Foxa1 gene was not expressed in rat footpads until P2, but from P2 to P5, its expression up-regulated sharply, and thereafter maintained at a high level until adulthood. FoxA1 protein was first observed at P6 in eccrine sweat glands, four days after initial detection of Foxa1 gene transcripts. In skin, FoxA1-positive cells were present exclusively in secretory coils, with 95% being K7-positive secretory cells and 5% being α-SMA-positive myoepithelial cells. We conclude that Foxa1 can be used as a marker of eccrine sweat glands in skin and also as a marker of secretory coils, and Foxa1 is related to the development of secretory coils.


Assuntos
Glândulas Écrinas/embriologia , Glândulas Écrinas/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Organogênese/genética , Actinas/genética , Actinas/metabolismo , Animais , Biomarcadores , Feminino , Expressão Gênica , Imuno-Histoquímica , Masculino , Ratos
14.
J Mol Histol ; 48(3): 219-223, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28353163

RESUMO

Secretory coils and ducts are two components of eccrine sweat glands with different structures and functions. In our previous study, we combined keratins and α-SMA to distinguish between secretory coils and ducts. However, the key deficiency of the method was that none of the antibodies used was specific for ducts. In this study, we first examined the co-localization of K5/K7, α-SMA/K14, K7/S100P and α-SMA/S100A2 by double-immunofluorescence staining to confirm the localization of S100P and S100A2 in native human eccrine sweat glands, and second we identified secretory coil-like and duct-like structures in the 3D reconstituted eccrine sweat gland spheroids by double-immunofluorescence staining for K7/S100P and α-SMA/S100A2. In native human eccrine sweat glands, S100A2 immunoreactivity was confined to the outer layer and S100P to the inner layer of the duct. In 12-week Matrigel plugs containing eccrine sweat gland cells, double-immunofluorescence staining for K7/S100P and α-SMA/S100A2 could easily distinguish duct-like structures from secretory coil-like structures. We conclude that S100A2 and S100P can be used as specific duct markers in eccrine sweat glands, and combined use of S100P or S100A2 with keratins enables easy to distinction between secretory coils and ducts.


Assuntos
Proteínas de Ligação ao Cálcio/análise , Fatores Quimiotáticos/análise , Glândulas Écrinas/química , Proteínas de Neoplasias/análise , Proteínas S100/análise , Esferoides Celulares/ultraestrutura , Actinas/análise , Adolescente , Adulto , Células Cultivadas , Criança , Pré-Escolar , Colágeno , Combinação de Medicamentos , Glândulas Écrinas/ultraestrutura , Imunofluorescência , Humanos , Queratinas/análise , Laminina , Proteoglicanas , Adulto Jovem
15.
J Mol Histol ; 48(2): 113-120, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28093664

RESUMO

The aim of this study is to characterize the cell proliferation and proliferating cell types during three-dimensional reconstitution of eccrine sweat glands. Eccrine sweat gland cells suspended in Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 1, 2, 4, 6, 8, 14, 21, 28, 35 and 42 days post-implantation, Matrigel plugs were immunostained for Ki67, to detect cycling cells, and the Ki67 labeling index at different time points was calculated. Three pairs of antibodies, Ki67/K7, Ki67/K14 and Ki67/α-SMA, were used to identify proliferating cell types in the plugs, on days 28, 35 and 42, by immunofluorescence double staining. The Ki67 labeling index on the first day of implantation was 30.53%, rapidly reached a peak value of 81.43% at 2 days post-implantation, and then decreased gradually to a low of 2.87% at 42 days. Double immunofluorescence staining showed that K14/Ki67 double-stained cells accounted for 80% of the Ki67-positive cells, whereas K7/Ki67 and α-SMA/Ki67 double-stained cells each accounted for 10% of the Ki67-positive population on days 28, 35, or 42 post-implantation. We conclude that eccrine sweat gland cells rapidly enter the cell cycle after implantation, but quickly show decreased cell proliferation and increased cell differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Glândulas Écrinas/citologia , Animais , Ciclo Celular , Células Cultivadas , Colágeno , Combinação de Medicamentos , Glândulas Écrinas/transplante , Humanos , Antígeno Ki-67/análise , Laminina , Camundongos , Camundongos Nus , Proteoglicanas , Fatores de Tempo
16.
J Mol Histol ; 47(5): 485-90, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27492422

RESUMO

Increasing evidence indicates that maintenance of cell polarity plays a pivotal role in the regulation of glandular homeostasis and function. We examine the markers for polarity at different time points to investigate the formation of cell polarity during 3D reconstitution of eccrine sweat glands. Mixtures of eccrine sweat gland cells and Matrigel were injected subcutaneously into the inguinal regions of nude mice. At 2, 3, 4, 5 and 6 weeks post-implantation, Matrigel plugs were removed and immunostained for basal collagen IV, lateral ß-catenin, lateroapical ZO-1 and apical F-actin. The results showed that the cell polarity of the spheroids appeared in sequence. Formation of basal polarity was prior to lateral, apical and lateroapical polarity. Collagen IV was detected basally at 2 weeks, ß-catenin laterally and ZO-1 lateroapically at 3 weeks, and F-actin apically at 4 weeks post-implantation. At week 5 and week 6, the localization and the positive percentage of collagen IV, ß-catenin, ZO-1 or F-actin in spheroids was similar to that in native eccrine sweat glands. We conclude that the reconstituted 3D eccrine sweat glands are functional or potentially functional.


Assuntos
Transplante de Células , Colágeno , Glândulas Écrinas/citologia , Laminina , Proteoglicanas , Regeneração , Adolescente , Adulto , Animais , Biomarcadores , Transplante de Células/métodos , Combinação de Medicamentos , Glândulas Écrinas/metabolismo , Humanos , Camundongos , Camundongos Nus , Modelos Animais , Cultura Primária de Células , Fatores de Tempo , Adulto Jovem
17.
Acta Histochem ; 118(2): 74-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26657518

RESUMO

Cell proliferation and turnover are fueled by stem cells. In a previous study, we demonstrated that rat eccrine sweat glands contained abundant bromodeoxyuridine (BrdU)-label-retaining cells (LRCs). However, morphological observations showed that eccrine sweat glands usually show little or no signs of homeostatic change. In this study, we account for why the homeostatic change is rare in eccrine sweat glands based on cytokinetic changes in BrdU-LRC turnover, and also determine the BrdU-labeled cell type. Thirty-six newborn SD rats, were injected intraperitoneally with 50mg/kg BrdU twice daily at a 2h interval for 4 consecutive days. After a chase period of 4, 6, 8, 12, 24 and 32 weeks, rats were euthanized, and the hind footpads were removed and processed for BrdU immunostaining, and BrdU/α-SMA and BrdU/K14 double-immunostaining. BrdU-LRCs were observed in the ducts, secretory coils and mesenchymal cells at all survival time points. The percentage of BrdU(+) cells in rat eccrine sweat glands averaged 4.2±1.2% after 4 weeks of chase, increased slightly by the 6th week, averaging 4.4±0.9%, and peaked at 8 weeks, averaging 5.3±1.0%. Subsequently, the average percentage of BrdU(+) cells declined to 3.2±0.8% by the 32nd week. There was no difference in the percentage of BrdU-LRCs among the different survival time points except that a significant difference in the percentage of BrdU-LRCs detected at 24 weeks versus 8 weeks, and 32 weeks versus 8 weeks, was observed. We concluded that the BrdU-LRCs turnover is slow in eccrine sweat glands.


Assuntos
Glândulas Écrinas/citologia , Animais , Bromodesoxiuridina/metabolismo , Proliferação de Células , Glândulas Écrinas/metabolismo , Feminino , Imuno-Histoquímica , Indicadores e Reagentes/metabolismo , Masculino , Ratos Sprague-Dawley
18.
J Mol Histol ; 46(4-5): 431-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26189057

RESUMO

Victims with extensive and deep burns are unable to regenerate eccrine sweat glands. Combining of stem cells and biomimetic ECM to generate cell-based 3D tissues is showing promise for tissue repair and regeneration. We co-cultured BrdU-labeled bone marrow-derived mesenchymal stem cells (BM-MSCs) and eccrine sweat gland cells in Matrigel for 2 weeks in vitro and then evaluated for BM-MSCs differentiation into functional eccrine sweat gland cells by morphological assessment and immunohistochemical double staining for BrdU/pancytokeratin, BrdU/ZO-2, BrdU/E-cadherin, BrdU/desmoglein-2, BrdU/Na(+)-K(+)-ATPase α, BrdU/NHE1 and BrdU/CFTR. Cells formed spheroid-like structures in Matrigel, and BrdU-labeled BM-MSCs were involved in the 3D reconstitution of eccrine sweat gland tissues, and the incorporated BM-MSCs expressed an epithelial cell marker (pancytokeratin), epithelial cell junction proteins (ZO-2, E-cadherin and desmoglein-2) and functional proteins of eccrine sweat glands (Na(+)-K(+)-ATPase α, NHE1 and CFTR). In conclusion, three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes the transdifferentiation of BM-MSCs into potentially functional eccrine sweat gland cells.


Assuntos
Transdiferenciação Celular , Glândulas Écrinas/citologia , Células-Tronco Mesenquimais/citologia , Adolescente , Adulto , Antígenos de Superfície/metabolismo , Criança , Técnicas de Cocultura , Colágeno , Combinação de Medicamentos , Humanos , Imuno-Histoquímica , Imunofenotipagem , Laminina , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Proteoglicanas , Adulto Jovem
19.
Acta Histochem ; 117(3): 275-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25805415

RESUMO

Eccrine sweat glands are comprised of secretory coils and ducts, which are distinct in morphology and function. To better understand the roles of the two parts in development, homeostasis, wound repair and regeneration of eccrine sweat glands, we must distinguish between them. In this study, the localization of keratins and alpha-SMA in human eccrine sweat glands was examined by immunofluorescence staining. Based on the differential localization of keratins and alpha-SMA in different cell types, four pairs of antibodies (K5/K7, K5/alpha-SMA, K14/K7 and K14/alpha-SMA) were used to differentiate secretory coils from ducts by double-immunofluorescence staining. Immunofluorescence staining showed that myoepithelial cells of secretory coils expressed K5, K14 and alpha-SMA, whereas secretory cells of secretory coils expressed K7, K8, K15, K18 and K19. Ductal cells expressed K5, K8, K14 and K19. Double-staining showed that the secretory coils were K5(+)/K7(+), K5(+)/alpha-SMA(+), K14(+)/K7(+) and K14(+)/alpha-SMA(+), whereas ducts were K5(+)/K7(-), K5(+)/alpha-SMA(-), K14(+)/K7(-) and K14(+)/alpha-SMA(-). In conclusion, by combining use of keratins and alpha-SMA antibodies, secretory coils can be easily differentiated from ducts in morphology.


Assuntos
Actinas/metabolismo , Glândulas Écrinas/metabolismo , Queratinas/metabolismo , Adulto , Técnica Indireta de Fluorescência para Anticorpo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA