Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(33): 12935-12942, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387467

RESUMO

We report the preparation of hexagonal mesoporous silica from single-source giant surfactants constructed via dihydroxyl-functionlized polyhedral oligomeric silsesquioxane (DPOSS) heads and a polystyrene (PS) tail. After thermal annealing, the obtained well-ordered hexagonal hybrid was pyrolyzed to afford well-ordered mesoporous silica. A high porosity (e.g., 581 m2/g) and a uniform and narrow pore size distribution (e.g., 3.3 nm) were achieved. Mesoporous silica in diverse shapes and morphologies were achieved by processing the precursor. When the PS tail length was increased, the pore size expanded accordingly. Moreover, such pyrolyzed, ordered mesoporous silica can help to increase both efficiency and stability of nanocatalysts.

2.
Macromol Rapid Commun ; 41(1): e1900534, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31747084

RESUMO

Microscopic structures have a significant influence on the properties of ceramics. The development of macromolecular self-assembly has allowed for control over microscopic structures of ceramics to prepare ceramics with diverse compositions and ordered nanostructures. Herein, recent progress in the preparation of ceramics with periodically ordered nanostructures guided by phase-separated macromolecules are reviewed, which can be summarized as a general strategy termed the "macromolecule-guided strategy." Moreover, two different subcategories, namely, the macromolecule-templated method and the macromolecule-precursor method, are illustrated. In the former method, amphiphilic macromolecules are used as templates to guide the assembly of inorganic species into ordered nanostructures, which are subsequently converted into ceramics; in the latter method, amphiphilic macromolecules containing non-volatile elements are used as the single-source precursors for ordered ceramics. It is believed that the unique diversity and tunable features of macromolecular self-assembly might offer unprecedented opportunities in the development of functional ceramics for various applications.


Assuntos
Cerâmica/química , Substâncias Macromoleculares/química , Nanoestruturas/química , Géis/química , Metais/química , Óxidos/química , Polímeros/química , Porosidade , Silício/química
3.
ACS Omega ; 3(4): 4688-4694, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458690

RESUMO

A hierarchically porous zirconia (ZrO2) monolith was successfully fabricated by using bacterial cellulose (BC) as a biotemplate and preceramic polymer as a zirconium resource, via freeze-drying and two-step calcination process. Images of scanning electron microscopy showed that the ZrO2 monolith well-replicated a three-dimensional reticulated structure of pristine BC and possessed good morphology stability till 1100 °C in air. Results of N2 adsorption/desorption and mercury porosimetry analysis revealed the hierarchically porous structure and large specific area (9.7 m2·g-1) of the ZrO2 monolith, respectively. Patterns of X-ray powder diffraction indicated that the monoclinic phase and tetragonal phase coexisted in the ZrO2 monolith with the former as the main phase. In addition, the ZrO2 monolith possessed low bulk density (0.13 g·cm-3) and good mechanical strength. These properties suggest that the as-prepared ZrO2 monolith has a great potential to serve as an ideal catalyst or catalyst support.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA