RESUMO
BACKGROUND: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a non-invasive technique which could monitor tumor morphology, blood vessel dynamics, and micro-environmental changes. PURPOSE: To evaluate the value of DCE-MRI semi-quantitative parameters in monitoring the neoadjuvant chemotherapy (NAC) response of osteosarcoma. MATERIAL AND METHODS: Twenty-five patients pathologically confirmed as osteosarcoma received four cycles of NAC followed by surgery. All patients underwent conventional and dynamic MRI twice, before starting chemotherapy and before surgical treatment. With a reference standard of histological response (tumor necrosis rate), semi-quantitative parameters were compared between good response group (TNR ≥ 90%) and non-response group (TNR < 90%). The differences between intra- and inter-group parameters before and after NAC were analyzed by Mann-Whitney U test. Receiver operating characteristic (ROC) analysis was generated to assess the parameters' efficacy in predicting the outcome of NAC. RESULTS: The changes were statistically significant on slope, maximum signal intensity (SImax), time to peak (TTP), signal enhanced extent (SEE), peak percent enhancement (PPE), washout rate (WOR), and enhancement rate (ER) in the good response group (P < 0.05), while only SImax and SEE were different in the non-response group after NAC. The changes in Slope, SImax, TTP, SEE, WOR, and ER were markedly different (P < 0.05) between the two groups after NAC. Also, at the threshold values of 3.2%/s, 175 s, and 5.4% (slope, TTP, and ER), the sensitivity and specificity for predicting good response to chemotherapy were 83.3% and 92.3%, 91.7% and 69.2%, 84.6% and 75.0%, respectively. CONCLUSION: Slope, TTP, and ER values could be used to evaluate and predict the response to NAC in osteosarcoma.
Assuntos
Terapia Neoadjuvante , Osteossarcoma , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética/métodos , Terapia Neoadjuvante/métodos , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/tratamento farmacológico , Curva ROCRESUMO
A network meta-analysis was conducted to compare the short-term efficacy and adverse events of different drugs for the treatment of postmenopausal osteoporosis (PMO), providing a more effective treatment for PMO. We initially searched through various databases like PubMed, Cochrane Library, and EMBASE from inception till October 2016. All randomized controlled trials (RCTs) of drugs for the treatment of PMO were included for direct and indirect comparison. A combination of direct and indirect evidence of different inhibitors of anti-diabetic drugs for treatment of PMO were considered for calculating the weighted mean difference (WMD) value or odd ratio (OR) value and to draw surface under the cumulative ranking (SUCRA) curves. Twenty-seven RCTs were ultimately incorporated into this network meta-analysis comprising of 48 200 patients suffering from PMO. The network meta-analysis revealed that compared with placebo, alendronate had better efficacy on improving bone mineral density (BMD) at lumbar spine, femoral neck, and total hip. Risedronate and raloxifene had relatively lower incidence of new vertebral fractures. The SUCRA analysis showed that alendronate had better efficacy on improving BMD, risedronate could significantly decrease the incidence of fresh fracture and bazedoxifene was relatively safe. The available evidence suggested that alendronate and risedronate might be the superior choices for the treatment of PMO, while bazedoxifene was a comparatively safer option for patients.
Assuntos
Alendronato/efeitos adversos , Alendronato/uso terapêutico , Osteoporose Pós-Menopausa/tratamento farmacológico , Densidade Óssea/efeitos dos fármacos , Feminino , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Osteoporose Pós-Menopausa/fisiopatologia , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
MicroRNAs (miRNAs or miRs) can function as tumor-suppressor or oncogenic genes. Upregulation of miRNA-141 has been frequently observed in colorectal cancer (CRC) samples. The experimentally observed targets of miR-141 include the tumor-suppressor gene mitogen-activated protein kinase kinase 4 (MAP2K4). The aim of the present study was to investigate the role of miR-141 in the proliferation of colonic cancer. Western blotting, immunohistochemistry and reverse transcription-quantitative polymerase chain reaction were used to detect the expression levels of miR-141 and MAP2K4 in colonic adenocarcinoma (CAC) and adjacent non-cancerous (NC) tissue samples, as well as in human CAC cell lines (HT29, T94 and LS174). MTT assay was used to investigate the proliferation and apoptosis of these three cell lines. The expression levels of miR-141 were significantly upregulated in clinical samples of CAC, compared with adjacent NC tissues. By contrast, MAP2K4 was downregulated in CAC. The in vitro assays demonstrated that overexpression of miR-141 resulted in cell proliferation of CAC by inhibiting MAP2K4 activity. Our study suggests that targeting the miR-141-MAP2K4 signaling pathway may represent a novel approach for the treatment of CRC.
RESUMO
Diffusion tensor imaging plays an important role in the accurate diagnosis and prognosis of spinal cord diseases. However, because of technical limitations, the imaging sequences used in this technique cannot reveal the fine structure of the spinal cord with precision. We used the readout segmentation of long variable echo-trains (RESOLVE) sequence in this cross-sectional study of 45 healthy volunteers aged 20 to 63 years. We found that the RESOLVE sequence significantly increased the resolution of the diffusion images and improved the median signal-to-noise ratio of the middle (C4-6) and lower (C7-T1) cervical segments to the level of the upper cervical segment. In addition, the values of fractional anisotropy and radial diffusivity were significantly higher in white matter than in gray matter. Our study verified that the RESOLVE sequence could improve resolution of diffusion tensor imaging in clinical applications and provide accurate baseline data for the diagnosis and treatment of cervical spinal cord diseases.
RESUMO
AIM: To evaluate the accuracy of diffusion-weighted imaging (DWI) without bowel preparation, the optimal b value and the changes in apparent diffusion coefficient (ADC) in detecting ulcerative colitis (UC). METHODS: A total of 20 patients who underwent 3T magnetic resonance imaging (MRI) without bowel preparation and colonoscopy within 24 h were recruited. Biochemical indexes, including C-reactive protein (CRP), erythrocyte sedimentation rate, hemoglobin, leucocytes, platelets, serum iron and albumin, were determined. Biochemical examinations were then performed within 24 h before or after MR colonography was conducted. DWI was performed at various b values (b = 0, 400, 600, 800, and 1000 s/mm(2)). Two radiologists independently and blindly reviewed conventional- and contrast-enhanced MR images, DWI and ADC maps; these radiologists also determined ADC in each intestinal segment (rectum, sigmoid, left colon, transverse colon, and right colon). Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic performance of DWI hyperintensity from various b factors, ADC values and different radiological signs to detect endoscopic inflammation in the corresponding bowel segment. Optimal ADC threshold was estimated by maximizing the combination of sensitivity and specificity. MR findings were correlated with endoscopic results and clinical markers; these findings were then estimated by ROC analysis. RESULTS: A total of 100 segments (71 with endoscopic colonic inflammation; 29 normal) were included. The proposed total magnetic resonance score (MR-score-T) was correlated with the total modified Baron score (Baron-T; r = 0.875, P < 0.0001); the segmental MR score (MR-score-S) was correlated with the segmental modified Baron score (Baron-S; r = 0.761, P < 0.0001). MR-score-T was correlated with clinical and biological markers of disease activity (r = 0.445 to 0.831, P < 0.05). MR-score-S > 1 corresponded to endoscopic colonic inflammation with a sensitivity of 85.9%, a specificity of 82.8% and an area under the curve (AUC) of 0.929 (P < 0.0001). The accuracy of DWI hyperintensity was significantly greater at b = 800 than at b = 400, 600, or 1000 s/mm(2) (P < 0.05) when endoscopic colonic inflammation was detected. DWI hyperintensity at b = 800 s/mm(2) indicated endoscopic colonic inflammation with a sensitivity of 93.0%, a specificity of 79.3% and an AUC of 0.867 (P < 0.0001). Quantitative analysis results revealed that ADC values at b = 800 s/mm(2) differed significantly between endoscopic inflamed segment and normal intestinal segment (1.56 ± 0.58 mm(2)/s vs 2.63 ± 0.46 mm(2)/s, P < 0.001). The AUC of ADC values was 0.932 (95% confidence interval: 0.881-0.983) when endoscopic inflammation was detected. The threshold ADC value of 2.18 × 10(-3) mm(2)/s indicated that endoscopic inflammation differed from normal intestinal segment with a sensitivity of 89.7% and a specificity of 80.3%. CONCLUSION: DWI combined with conventional MRI without bowel preparation provides a quantitative strategy to differentiate actively inflamed intestinal segments from the normal mucosa to detect UC.