Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32422, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933981

RESUMO

The modified coconut shell biochars (MCSBCs) were fabricated and their adsorptions for Pb(II) were evaluated, in which waste coconut shell was used as the raw material, both ZnCl2 and KMnO4 were applied as the inorganic modifiers. FT-IR spectra, TGA, SEM and BET techniques were utilized to characterize their properties. It was spotted that the thermal stability of UCSBC could arrive at 500 °C. The BET specific surface areas of both Zn- and Mn-modified MCSBCs (485.137, 476.734 m2/g) were highly decreased as compared with that of UCSBC (3528.78 m2/g). In contrast, the average pore diameters of both Zn- and Mn-modified MCSBCs (3.295, 3.803 nm) were smaller than that of UCSBC (3.814 nm). These findings reveal that the modification of CSBC didn't change its pore size. Their adsorptions for Pb(II) were performed and some controlling factors involving pH, contact time, starting concentration and temperature were explored. Moreover, the experiment data were fitted via linear and non-linear techniques. It was found that the Langmuir maximal adsorption amounts of un-modified coconut shell biochar (UCSBC), Zn-modified and Mn-modified MCSBCs for Pb(II) could reach 31.653, 86.547 and 93.666 mg/g, respectively. Two-parameter kinetic models exposed that Pb(II) adsorption on UCSBC, Zn-modified and Mn-modified MCSBCs obeyed both the Lagergren first-order (non-linear R2 = 0.990, 0.954, 0.953, respectively) and Avrami fractional-order (non-linear R2 = 0.989, 0.946, 0.945, respectively) kinetic models. Two-parameter and three-parameter isotherm models verified that Pb(II) adsorption on UCSBC, Zn-modified and Mn-modified MCSBCs followed the Langmuir (non-linear R2 = 0.992, 0.997, 0.993, respectively) as well as Sips (non-linear R2 = 0.992, 0.997, 0.992, respectively) isotherm models. The computation of thermodynamic parameters evidenced that the modification of UCSBC via KMnO4 and ZnCl2 can effectively rise its adsorption for Pb(II), exhibiting promising applications in the handling of metal-bearing water.

2.
ACS Appl Mater Interfaces ; 11(44): 41821-41827, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31613084

RESUMO

As a new type of quasi-two-dimensional nanomaterial, CdSe nanoplatelets (NPLs) possess excellent properties such as narrow emission peak, large absorption cross section, and a low threshold of amplified spontaneous emission. However, the origin of emission especially at low temperatures has not been studied clearly up till now. Here, we study the temperature-dependent photoluminescence of CdSe NPLs which show two emission peaks at low temperatures. It is interesting to note that the intensity of the low-energy peak shows a correlation with laser irradiation time. Moreover, the low-temperature PL spectra of four CdSe NPLs with different lateral sizes demonstrate the relationship of low-energy peaks with the surface. It has been confirmed that CdSe NPLs with larger surface areas to volume ratio have stronger low-energy emissions, which is ascribed to the surface-state-related emission. Finally, surface passivation of CdSe NPLs attenuates the intensity of the low-energy peak, which further verifies our model. Our results demonstrate the critical significance of surface in CdSe NPLs for their optical properties, which is crucial for the application of optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA