Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260378

RESUMO

Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.


Assuntos
Centrossomo/metabolismo , Replicação do DNA , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Núcleo Celular/metabolismo , Cílios/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Vesículas Citoplasmáticas/metabolismo , Fibroblastos/metabolismo , Fase G1 , Células HEK293 , Células HeLa , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Mitose , Mutação/genética , Fosforilação , Proteólise , Proteínas Repressoras/genética , Fase S
2.
J Biol Chem ; 298(12): 102658, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356903

RESUMO

Cartwheel assembly is considered the first step in the initiation of procentriole biogenesis; however, the reason for persistence of the assembled human cartwheel structure from S phase to late mitosis remains unclear. Here, we demonstrate mainly using cell synchronization, RNA interference, immunofluorescence and time-lapse-microscopy, biochemical analysis, and methods that the cartwheel persistently assembles and maintains centriole engagement and centrosome integrity during S phase to late G2 phase. Blockade of the continuous accumulation of centriolar Sas-6, a major cartwheel protein, after procentriole formation induces premature centriole disengagement and disrupts pericentriolar matrix integrity. Additionally, we determined that during mitosis, CDK1-cyclin B phosphorylates Sas-6 at T495 and S510, disrupting its binding to cartwheel component STIL and pericentriolar component Nedd1 and promoting cartwheel disassembly and centriole disengagement. Perturbation of this phosphorylation maintains the accumulation of centriolar Sas-6 and retains centriole engagement during mitotic exit, which results in the inhibition of centriole reduplication. Collectively, these data demonstrate that persistent cartwheel assembly after procentriole formation maintains centriole engagement and that this configuration is relieved through phosphorylation of Sas-6 by CDK1-cyclin B during mitosis in human cells.


Assuntos
Centríolos , Centrossomo , Humanos , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Mitose , Fosforilação , Proteínas/metabolismo , Ciclina B
3.
J Cell Sci ; 134(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34313310

RESUMO

Precise chromosome segregation is mediated by a well-assembled mitotic spindle, which requires balance of the kinase activity of Aurora A (AurA, also known as AURKA). However, how this kinase activity is regulated remains largely unclear. Here, using in vivo and in vitro assays, we report that conjugation of SUMO2 with AurA at K258 in early mitosis promotes the kinase activity of AurA and facilitates the binding with its activator Bora. Knockdown of the SUMO proteases SENP3 and SENP5 disrupts the deSUMOylation of AurA, leading to increased kinase activity and abnormalities in spindle assembly and chromosome segregation, which could be rescued by suppressing the kinase activity of AurA. Collectively, these results demonstrate that SENP3 and SENP5 deSUMOylate AurA to render spatiotemporal control on its kinase activity in mitosis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Aurora Quinase A , Peptídeo Hidrolases , Aurora Quinase A/genética , Cisteína Endopeptidases/metabolismo , Humanos , Mitose , Peptídeo Hidrolases/metabolismo , Fosforilação , Fuso Acromático/genética , Fuso Acromático/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(19): 10378-10387, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332162

RESUMO

Barrier-to-autointegration factor (BAF) is a highly conserved protein in metazoans that has multiple functions during the cell cycle. We found that BAF is SUMOylated at K6, and that this modification is essential for its nuclear localization and function, including nuclear integrity maintenance and DNA replication. K6-linked SUMOylation of BAF promotes binding and interaction with lamin A/C to regulate nuclear integrity. K6-linked SUMOylation of BAF also supports BAF binding to DNA and proliferating cell nuclear antigen and regulates DNA replication. SENP1 and SENP2 catalyze the de-SUMOylation of BAF at K6. Disrupting the SUMOylation and de-SUMOylation cycle of BAF at K6 not only disturbs nuclear integrity, but also induces DNA replication failure. Taken together, our findings demonstrate that SUMOylation at K6 is an important regulatory mechanism that governs the nuclear functions of BAF in mammalian cells.


Assuntos
Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Lamina Tipo A/metabolismo , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Sinais de Localização Nuclear/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/fisiologia , Sumoilação/fisiologia
5.
Proc Natl Acad Sci U S A ; 116(3): 874-879, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30598432

RESUMO

The Sonic Hedgehog (Shh) pathway conducts primarily in the primary cilium and plays important roles in cell proliferation, individual development, and tumorigenesis. Shh ligand binding with its ciliary membrane-localized transmembrane receptor Patched1 results in the removal of Patched1 from and the translocation of the transmembrane oncoprotein Smoothened into the cilium, leading to Shh signaling activation. However, how these processes are coupled remains unknown. Here, we show that the Patched1-ArhGAP36-PKA-Inversin axis determines the ciliary translocation of Smoothened. We find that Patched1 interacts with and stabilizes the PKA negative regulator ArhGAP36 to the centrosome. Activating the Shh pathway results in the removal of ArhGAP36 from the mother centriole and the centrosomal PKA accumulation. This PKA then phosphorylates Inversin and promotes its interaction with and the ciliary translocation of Smoothened. Knockdown of Inversin disrupts the ciliary translocation of Smoothened and Shh pathway activation. These findings reveal a regulatory molecular mechanism for the initial step of Shh pathway activation.


Assuntos
Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Receptor Smoothened/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Humanos , Camundongos , Fosforilação , Transdução de Sinais
6.
J Biol Chem ; 295(43): 14780-14788, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32938714

RESUMO

The mitotic kinase Aurora B regulates the condensation of chromatin into chromosomes by phosphorylating chromatin proteins during early mitosis, whereas the phosphatase PP1γ performs the opposite function. The roles of Aurora B and PP1γ must be tightly coordinated to maintain chromosomes at a high phosphorylation state, but the precise mechanisms regulating their function remain largely unclear. Here, mainly through immunofluorescence microscopy and co-immunoprecipitation assays, we find that dissociation of PP1γ from chromosomes is essential for maintaining chromosome phosphorylation. We uncover that PP1γ is recruited to mitotic chromosomes by its regulatory subunit Repo-Man in the absence of Aurora B activity and that Aurora B regulates dissociation of PP1γ by phosphorylating and disrupting PP1γ-Repo-Man interactions on chromatin. Overexpression of Repo-Man mutants that cannot be phosphorylated or inhibition of Aurora B kinase activity resulted in the retention of PP1γ on chromatin and prolonged the chromatin condensation process; a similar outcome was caused by the ectopic targeting of PP1γ to chromatin. Together, our findings reveal a novel regulation mechanism of chromatin condensation in which Aurora B counteracts PP1γ activity by releasing PP1γ from Repo-Man and may have important implications for understanding the regulations of dynamic structural changes of the chromosomes in mitosis.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteína Fosfatase 1/metabolismo , Cromatina/metabolismo , Cromossomos Humanos/metabolismo , Células HeLa , Humanos , Mitose , Fosforilação , Mapas de Interação de Proteínas
7.
J Cell Sci ; 132(18)2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31434716

RESUMO

Importin-α serves as an adaptor linking importin-ß to proteins carrying a nuclear localization sequence (NLS). During interphase, this interaction enables nuclear protein import, while in mitosis it regulates spindle assembly factors (SAFs) and controls microtubule nucleation, stabilization and spindle function. Here, we show that human importin-α1 is regulated during the cell cycle and is phosphorylated at two sites (threonine 9 and serine 62) during mitosis by the major mitotic protein kinase CDK1-cyclin B. Mutational analysis indicates that the mitotic phosphorylation of importin-α1 inhibits its binding to importin-ß and promotes the release of TPX2 and KIFC1, which are then targeted like importin-ß to the spindle. Loss of importin-α1 or expression of a non-phosphorylated mutant of importin-α1 results in the formation of shortened spindles with reduced microtubule density and induces a prolonged metaphase, whereas phosphorylation-mimicking mutants are functional in mitosis. We propose that phosphorylation of importin-α1 is a general mechanism for the spatial and temporal control of mitotic spindle assembly by CDK1-cyclin B1 that acts through the release of SAFs such as TPX2 and KIFC1 from inhibitory complexes that restrict spindle assembly.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B1/metabolismo , alfa Carioferinas/metabolismo , Proteínas de Ciclo Celular , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Imunoprecipitação , Microtúbulos/metabolismo , Mitose/genética , Mitose/fisiologia , Fosforilação , Fuso Acromático/genética , Fuso Acromático/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
8.
J Cell Sci ; 132(2)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30578313

RESUMO

Hedgehog (Hh) signaling is a highly conserved cell signaling pathway important for cell life, development and tumorigenesis. Increasing evidence suggests that the Hh signaling pathway functions in certain phases of the cell cycle. However, the coordination between Hh signaling and cell cycle control remains poorly understood. Here, we show that polo-like kinase-1 (Plk1), a critical protein kinase regulating many processes during the cell cycle, also regulates Hh signaling by phosphorylating and inhibiting Gli1, a downstream transcription factor of the Hh signaling pathway. Gli1 expression increases along with Hh signaling activation, leading to upregulation of Hh target genes, including cyclin E, during the G1 and S phases. Gli1 is phosphorylated at S481 by Plk1, and this phosphorylation facilitates the nuclear export and binding of Gli1 with its negative regulator Sufu, leading to a reduction in Hh signaling activity. Inhibition of Plk1 kinase activity led to Gli1 maintaining is role in promoting downstream gene expression. Collectively, our data reveal a novel mechanism regarding the crosstalk between Hh signaling and cell cycle control.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteínas de Ciclo Celular/genética , Células HEK293 , Células HeLa , Proteínas Hedgehog/genética , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Quinase 1 Polo-Like
9.
J Med Genet ; 57(7): 445-453, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32051257

RESUMO

BACKGROUND: Asthenoteratospermia, one of the most common causes for male infertility, often presents with defective sperm heads and/or flagella. Multiple morphological abnormalities of the sperm flagella (MMAF) is one of the common clinical manifestations of asthenoteratospermia. Variants in several genes including DNAH1, CEP135, CATSPER2 and SUN5 are involved in the genetic pathogenesis of asthenoteratospermia. However, more than half of the asthenoteratospermia cases cannot be explained by the known pathogenic genes. METHODS AND RESULTS: Two asthenoteratospermia-affected men with severe MMAF (absent flagella in >90% spermatozoa) from consanguineous families were subjected to whole-exome sequencing. The first proband had a homozygous missense mutation c.188G>A (p.Arg63Gln) of DZIP1 and the second proband had a homozygous stop-gain mutation c.690T>G (p.Tyr230*). Both of the mutations were neither detected in the human population genome data (1000 Genomes Project, Exome Aggregation Consortium) nor in our own data of a cohort of 875 Han Chinese control populations. DZIP1 encodes a DAZ (a protein deleted in azoospermia) interacting protein, which was associated with centrosomes in mammalian cells. Immunofluorescence staining of the centriolar protein Centrin1 indicated that the spermatozoa of the proband presented with abnormal centrosomes, including no concentrated centriolar dot or more than two centriolar dots. HEK293T cells transfected with two DZIP1-mutated constructs showed reduced DZIP1 level or truncated DZIP1. The Dzip1-knockout mice, generated by the CRSIPR-Cas9, revealed consistent phenotypes of severe MMAF. CONCLUSION: Our study strongly suggests that homozygous DZIP1 mutations can induce asthenoteratospermia with severe MMAF. The deficiency of DZIP1 induces sperm centrioles dysfunction and causes the absence of flagella.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Astenozoospermia/genética , Anormalidades Múltiplas/patologia , Animais , Astenozoospermia/patologia , Exoma/genética , Células HEK293 , Homozigoto , Humanos , Infertilidade Masculina , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Espermatozoides/metabolismo , Espermatozoides/patologia , Sequenciamento do Exoma
10.
J Biol Chem ; 294(14): 5643-5656, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723163

RESUMO

In all eukaryotes, a functional mitotic spindle is essential for distributing duplicated chromosomes into daughter cells. Mitotic spindle assembly involves highly ordered arrangement of microtubules (MTs). The Augmin protein complex recruits γ-tubulin ring complex (γ-TuRC) to MTs and thereby promotes MT-based MT nucleation and mitotic spindle assembly. However, several factors that may promote Augmin recruitment to MTs remain unknown. Here, we show that echinoderm microtubule-associated protein-like 3 (EML3), an MT-associated protein, facilitates binding between MTs and Augmin/γ-TuRC and recruiting the latter to MTs for proper mitotic spindle assembly and kinetochore-MT connections. Using immunofluorescence microscopy, live-cell imaging, and immunoprecipitation assays, we found that EML3 recruits Augmin/γ-TuRC to the MTs to enhance MT-based MT nucleation in both spindle and small acentrosomal asters. We also noted that the EML3-mediated recruitment is controlled by cyclin-dependent kinase 1 (CDK1), which phosphorylated EML3 at Thr-881 and promoted its binding to Augmin/γ-TuRC. RNAi-mediated EML3 knockdown in HeLa cells reduced spindle localization of Augmin/γ-TuRC, which resulted in abnormal spindle assembly and caused kinetochore-MT misconnection. The introduction of exogenous WT or a Thr-881 phosphorylation mimic EML3 variant into the EML3 knockdown cells restored normal Augmin/γ-TuRC localization and spindle assembly. The EML3 knockdown also affected the spindle assembly checkpoint, delaying chromosome congression and cell division. Taken together, our results indicate that EML3 regulates mitotic spindle assembly and the kinetochore-MT connection by regulating MT-based MT nucleation and recruiting Augmin/γ-TuRC to MTs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Mutação de Sentido Incorreto , Fuso Acromático/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
11.
J Biol Chem ; 294(27): 10383-10391, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31152066

RESUMO

In higher eukaryotic cells, the nuclear envelope (NE) is composed of double nuclear membranes studded with nuclear pore complexes (NPCs) and undergoes dynamic disassembly and reassembly during the cell cycle. However, how the NE and NPC reassemble remains largely unclear. Here, using HeLa, HEK293, and Drosophila cells, along with immunofluorescence microscopy and transmission EM methods, we found that postmitotic annulate lamellae (AL) assembly contributes to NE and NPC assembly. We observed that the AL are parallel membrane-pair stacks and possess regularly spaced AL pore complexes (ALPCs) that are morphologically similar to the NPCs. We found that the AL assemble in the cytoplasm during mitotic exit simultaneously with NE re-formation in daughter cells. Then, the assembled AL either bound the decondensing chromatin to directly transform into the NE or bound and fused with the outer nuclear membrane to join the assembling NE. The AL did not colocalize with sheet and tubular endoplasmic reticulum (ER) marker proteins on the ER or the lamin B receptor-localized membrane in the cytoplasm, suggesting that postmitotic AL assembly occurs independently of the chromatin and ER. Collectively, our results indicate that postmitotic AL assembly is a common cellular event and an intermediate step in NE and NPC assembly and in NE expansion in higher eukaryotic cells.


Assuntos
Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Animais , Citoplasma/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Retículo Endoplasmático/metabolismo , Células HEK293 , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mitose , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
12.
Nat Rev Mol Cell Biol ; 9(6): 464-77, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18478030

RESUMO

The small nuclear GTPase Ran controls the directionality of macromolecular transport between the nucleus and the cytoplasm. Ran also has important roles during mitosis, when the nucleus is dramatically reorganized to allow chromosome segregation. Ran directs the assembly of the mitotic spindle, nuclear-envelope dynamics and the timing of cell-cycle transitions. The mechanisms that underlie these functions provide insights into the spatial and temporal coordination of the changes that occur in intracellular organization during the cell-division cycle.


Assuntos
Mitose/fisiologia , Proteína ran de Ligação ao GTP/fisiologia , Animais , Humanos , Mitose/genética , Mutação , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
13.
J Biol Chem ; 292(24): 10131-10141, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28446612

RESUMO

CDK4 regulates G1/S phase transition in the mammalian cell cycle by phosphorylating retinoblastoma family proteins. However, the mechanism underlying the regulation of CDK4 activity is not fully understood. Here, we show that CDK4 protein is degraded by anaphase-promoting complex/cyclosome (APC/C) during metaphase-anaphase transition in HeLa cells, whereas its main regulator, cyclin D1, remains intact but is sequestered in cytoplasm. CDK4 protein reaccumulates in the following G1 phase and shuttles between the nucleus and the cytoplasm to facilitate the nuclear import of cyclin D1. Without CDK4, cyclin D1 cannot enter the nucleus. Point mutations that disrupt CDK4 and cyclin D1 interaction impair the nuclear import of cyclin D1 and the activity of CDK4. RNAi knockdown of CDK4 also induces cytoplasmic retention of cyclin D1 and G0/G1 phase arrest of the cells. Collectively, our data demonstrate that CDK4 protein is degraded in late mitosis and reaccumulates in the following G1 phase to facilitate the nuclear import of cyclin D1 for activation of CKD4 to initiate a new cell cycle in HeLa cells.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Fase G1 , Mitose , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Ciclina D1/química , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/química , Quinase 4 Dependente de Ciclina/genética , Indução Enzimática , Estabilidade Enzimática , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Estabilidade Proteica , Transporte Proteico , Proteólise , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
14.
J Biol Chem ; 292(4): 1351-1360, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27979967

RESUMO

The function of the primary cilia, which is assembled in most vertebrate cells, is achieved by transport in and out of kinds of signaling receptors. The BBSome protein complex could recognize and target membrane proteins to the cilia, but how the BBSome itself is transported into the cilia is poorly understood. Here we demonstrate that the centrosome protein Dzip1 mediates the assembly of the BBSome-Dzip1-PCM1 complex in the centriolar satellites (CS) at the G0 phase for ciliary translocation of the BBSome. Phosphorylation of Dzip1 at Ser-210 by Plk1 (polo-like kinase 1) during the G2 phase promotes disassembly of this complex, resulting in removal of Dzip1 and the BBSome from the CS. Inhibiting the kinase activity of Plk1 maintains the CS localization of the BBSome and Dzip1 at the G2 phase. Collectively, our findings reveal the cell cycle-dependent regulation of BBSome transport to the CS and highlight a potential mechanism that the BBSome-mediated signaling pathways are accordingly regulated during the cell cycle.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fase G2/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Centríolos/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
15.
J Cell Sci ; 129(7): 1429-40, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26872786

RESUMO

RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , DNA Ribossômico/genética , Proteínas Nucleares/metabolismo , RNA Polimerase I/metabolismo , Iniciação da Transcrição Genética/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fase G1/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Região Organizadora do Nucléolo/genética , Nucleofosmina , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína
16.
PLoS Biol ; 13(4): e1002129, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25860027

RESUMO

The primary cilium, which disassembles before mitotic entry and reassembles after mitosis, organizes many signal transduction pathways that are crucial for cell life and individual development. However, how ciliogenesis is regulated during the cell cycle remains largely unknown. Here we show that GSK3ß, Dzip1, and Rab8 co-regulate ciliogenesis by promoting the assembly of the ciliary membrane after mitosis. Immunofluorescence and super-resolution microscopy showed that Dzip1 was localized to the periciliary diffusion barrier and enriched at the mother centriole. Knockdown of Dzip1 by short hairpin RNAs led to failed ciliary localization of Rab8, and Rab8 accumulation at the basal body. Dzip1 preferentially bound to Rab8GDP and promoted its dissociation from its inhibitor GDI2 at the pericentriolar region, as demonstrated by sucrose gradient centrifugation of purified basal bodies, immunoprecipitation, and acceptor-bleaching fluorescence resonance energy transfer assays. By means of in vitro phosphorylation, in vivo gel shift, phospho-peptide identification by mass spectrometry, and GST pulldown assays, we demonstrated that Dzip1 was phosphorylated by GSK3ß at S520 in G0 phase, which increased its binding to GDI2 to promote the release of Rab8GDP at the cilium base. Moreover, ciliogenesis was inhibited by overexpression of the GSK3ß-nonphosphorylatable Dzip1 mutant or by disabling of GSK3ß by specific inhibitors or knockout of GSK3ß in cells. Collectively, our data reveal a unique cascade consisting of GSK3ß, Dzip1, and Rab8 that regulates ciliogenesis after mitosis.


Assuntos
Cílios , Proteínas de Ligação a DNA/fisiologia , Quinase 3 da Glicogênio Sintase/fisiologia , Mitose , Proteínas rab de Ligação ao GTP/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Glicogênio Sintase Quinase 3 beta , Camundongos , Células NIH 3T3 , Fosforilação
17.
Cell Mol Life Sci ; 74(12): 2127-2134, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28188342

RESUMO

PLK1 regulates almost every aspect of mitotic events, including mitotic entry, spindle assembly, chromosome alignment, sister chromatid segregation, metaphase-anaphase transition, cytokinesis, etc. In regulating the chromosome alignment and sister chromatid segregation, PLK1 has to be localized to and removed from kinetochores at the right times, and the underlying mechanism that regulates PLK1 both spatially and temporally only became clearer recently. It has been found that deubiquitination and ubiquitination of PLK1 are responsible for its localization to and dissociation from the kinetochores, respectively. The equilibrium of this ubiquitination and deubiquitination plays an important role in regulating proper chromosome alignment and timely sister chromatid segregation. Here, we summarize and discuss the recent findings in investigating the spatial and temporal regulation of PLK1 during chromosome alignment and sister chromatid segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ubiquitinação , Animais , Ciclo Celular , Humanos , Cinetocoros/metabolismo , Especificidade por Substrato , Quinase 1 Polo-Like
18.
J Cell Sci ; 128(15): 2830-41, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092935

RESUMO

Some nuclear proteins that are crucial in interphase relocate during the G2/M-phase transition in order to perform their mitotic functions. However, how they perform these functions and the underlying mechanisms remain largely unknown. Here, we report that a fraction of the nuclear periphery proteins lamin-A/C, LAP2α and BAF1 (also known as BANF1) relocate to the spindle and the cell cortex in mitosis. Knockdown of these proteins by using RNA interference (RNAi) induces short and fluffy spindle formation, and disconnection of the spindle from the cell cortex. Disrupting the microtubule assembly leads to accumulation of these proteins in the cell cortex, whereas depolymerizing the actin microfilaments results in the formation of short spindles. We further demonstrate that these proteins are part of a stable complex that links the mitotic spindle to the cell cortex and the spindle matrix by binding to spindle-associated dynein, the actin filaments in the cell cortex and the spindle matrix. Taken together, our findings unveil a unique mechanism where the nuclear periphery proteins lamin-A/C, LAP2α and BAF1 are assembled into a protein complex during mitosis in order to regulate assembly and positioning of the mitotic spindle.


Assuntos
Proteínas de Ligação a DNA/genética , Lamina Tipo A/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Fuso Acromático/genética , Citoesqueleto de Actina/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Microtúbulos/genética , Mitose/genética , Interferência de RNA , RNA Interferente Pequeno , Fuso Acromático/metabolismo
19.
J Biol Chem ; 290(28): 17546-58, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25987563

RESUMO

Aurora kinase A and B share great similarity in sequences, structures, and phosphorylation motif, yet they show different localizations and play distinct crucial roles. The factors that determine such differences are largely unknown. Here we targeted Aurora A to the localization of Aurora B and found that Aurora A phosphorylates the substrate of Aurora B and substitutes its function in spindle checkpoint. In return, the centrosome targeting of Aurora B substitutes the function of Aurora A in the mitotic entry. Expressing the chimera proteins of the Auroras with exchanged N termini in cells indicates that the divergent N termini are also important for their spatiotemporal localizations and functions. Collectively, we demonstrate that functional divergence of Aurora kinases is determined by spatial compartmentalization, and their divergent N termini also contribute to their spatial and functional differentiation.


Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase A/química , Aurora Quinase A/genética , Aurora Quinase B/química , Aurora Quinase B/genética , Compartimento Celular , Pontos de Checagem do Ciclo Celular , Centrossomo/metabolismo , Cromatina/metabolismo , Evolução Molecular , Células HeLa , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Mitose , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Fuso Acromático/metabolismo
20.
J Cell Sci ; 127(Pt 19): 4111-22, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25128564

RESUMO

The centrosome acts as the major microtubule-organizing center (MTOC) for cytoskeleton maintenance in interphase and mitotic spindle assembly in vertebrate cells. It duplicates only once per cell cycle in a highly spatiotemporally regulated manner. When the cell undergoes mitosis, the duplicated centrosomes separate to define spindle poles and monitor the assembly of the bipolar mitotic spindle for accurate chromosome separation and the maintenance of genomic stability. However, centrosome abnormalities occur frequently and often lead to monopolar or multipolar spindle formation, which results in chromosome instability and possibly tumorigenesis. A number of studies have begun to dissect the role of mitotic kinases, including NIMA-related kinases (Neks), cyclin-dependent kinases (CDKs), Polo-like kinases (Plks) and Aurora kinases, in regulating centrosome duplication, separation and maturation and subsequent mitotic spindle assembly during cell cycle progression. In this Commentary, we review the recent research progress on how these mitotic kinases are coordinated to couple the centrosome cycle with the cell cycle, thus ensuring bipolar mitotic spindle fidelity. Understanding this process will help to delineate the relationship between centrosomal abnormalities and spindle defects.


Assuntos
Ciclo Celular/fisiologia , Centrossomo/enzimologia , Proteínas Quinases/fisiologia , Fuso Acromático/enzimologia , Animais , Humanos , Mitose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA