Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(4): 136, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483758

RESUMO

Many organic contaminated sites require on-site remediation; excavation remediation processes can release many volatile organic compounds (VOCs) which are key atmospheric pollutants. It is therefore important to rapidly identify VOCs during excavation and map their risk areas for human health protection. In this study, we developed a rapid analysis and assessment method, aiming to and reveal the real-time distribution of VOCs, evaluate their human health risks by quantitative models, and design appropriate control measures. Through on-site diagonal distribution sampling and analysis, VOCs concentration showed a decreasing trend within 5 m from the excavation point and then increased after 5 m with the increase in distance from the excavation point (p < 0.05). The concentrations of VOCs near the dominant wind direction were higher than the concentrations of surrounding pollutants. In contrast with conventional solid-phase adsorption (SPA) and thermal desorption gas chromatography-mass spectrometry (TD-GC/MS) methods for determining the composition and concentration of VOCs, the rapid measurement of VOCs by photo-ionization detector (PID) fitted well with the chemical analysis and modeling assessment of cancer/non-cancer risk. The targeting area was assessed as mild-risk (PID < 10 ppm), moderate-risk (PID from 10 to 40 ppm), and heavy-risk (PID > 40 ppm) areas. Similarly, the human health risks also decreased gradually with the distance from the excavation point, with the main risk area located in the dominant wind direction. The results of rapid PID assessment were comparable to conventional risk evaluation, demonstrating its feasibility in rapidly identifying VOCs releases and assessing the human health risks. This study also suggested appropriate control measures that are important guidance for personal protection during the remediation excavation process.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Ambientais/análise
2.
Front Cell Dev Biol ; 12: 1437951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114567

RESUMO

The three most common kinds of urologic malignancies are prostate, bladder, and kidney cancer, which typically cause substantial morbidity and mortality. Early detection and effective treatment are essential due to their high fatality rates. As a result, there is an urgent need for innovative research to improve the clinical management of patients with urologic cancers. A type of small noncoding RNAs of 22 nucleotides, microRNAs (miRNAs) are well-known for their important roles in a variety of developmental processes. Among these, microRNA-21 (miR-21) stands out as a commonly studied miRNA with implications in tumorigenesis and cancer development, particularly in urological tumors. Recent research has shed light on the dysregulation of miR-21 in urological tumors, offering insights into its potential as a prognostic, diagnostic, and therapeutic tool. This review delves into the pathogenesis of miR-21 in prostate, bladder, and renal cancers, its utility as a cancer biomarker, and the therapeutic possibilities of targeting miR-21.

3.
Front Pharmacol ; 15: 1405199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38939836

RESUMO

Urologic oncology is a significant public health concern on a global scale. Recent research indicates that long chain non-coding RNAs (lncRNAs) and autophagy play crucial roles in various cancers, including urologic malignancies. This article provides a summary of the latest research findings, suggesting that lncRNA-mediated autophagy could either suppress or promote tumors in prostate, kidney, and bladder cancers. The intricate network involving different lncRNAs, target genes, and mediated signaling pathways plays a crucial role in urological malignancies by modulating the autophagic process. Dysregulated expression of lncRNAs can disrupt autophagy, leading to tumorigenesis, progression, and enhanced resistance to therapy. Consequently, targeting particular lncRNAs that control autophagy could serve as a dependable diagnostic tool and a promising prognostic biomarker in urologic oncology, while also holding potential as an effective therapeutic approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA