Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Environ Res ; 244: 117937, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109958

RESUMO

Schwertmannite (SCH) is a promising material for adsorbing inorganic arsenic (As). We synthesized SCH nanoparticles (nano-SCH) via a modified chemical oxidation method and investigated the application of nano-SCH for the remediation of As-contaminated soils. The production of nano-SCH was successfully prepared using the persulfate oxidation method with carboxymethyl cellulose stabilization. The spherical structure of the nano-SCH particles had an average hydrodynamic diameter of 296 nm with high specific surface areas (108.9 m2/g). Compared with SCH synthesized via the H2O2 oxidation method, the percentage of Fe3+ precipitation in nano-SCH synthesis increased from 63.2% to 84.1%. The inorganic As adsorption capacity of nano-SCH improved by 2.27 times at solution pH = 6. After remediation of heavily As-contaminated soils by using 5% nano-SCH, the leachability of inorganic As rapidly decreased to 0.01% in 30 d. Correspondingly, the immobilization efficiencies of inorganic As in soil reached >99.9%. The inorganic As fractions in treated soil shifted from specifically and nonspecifically bound forms to amorphous and crystalline hydrous oxide-bound fractions. After treatment with 5% nano-SCH for 60 d, soil pH slightly decreased from 5.47 to 4.94; by contrast, soil organic matter content increased by 20.9%. Simultaneously, dehydrogenase concentration in soil decreased by 22.4%-34.7% during the remediation process. These changes in soil properties and As immobilization jointly decreased microbial activity and initiated the re-establishment of bacterial communities in the soil. In summary, this study presents a novel and high-productivity technology for nano-SCH synthesis and confirms the high As immobilization effectiveness of nano-SCH in the remediation of As-contaminated soils.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Compostos de Ferro , Poluentes do Solo , Arsênio/análise , Carboximetilcelulose Sódica , Peróxido de Hidrogênio , Solo/química , Poluentes do Solo/análise
2.
J Environ Manage ; 342: 118088, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201389

RESUMO

Nano zero-valent manganese (nZVMn) is theoretically expected to exhibit high reducibility and adsorption capacity, yet its feasibility, performance, and mechanism for reducing and adsorbing hexavalent uranium (U(VI)) from wastewater remain unclear. In this study, nZVMn was prepared via borohydride reduction, and its behaviors about reduction and adsorption of U(VI), as well as the underlying mechanism, were investigated. Results indicated that nZVMn exhibited a maximum U(VI) adsorption capacity of 625.3 mg/g at a pH of 6 and an adsorbent dosage of 1 g/L, and the co-existing ions (K+, Na+, Mg2+, Cd2+, Pb2+, Tl+, Cl-) at studied range had little interference on U(VI) adsorption. Furthermore, nZVMn effectively removed U(VI) from rare-earth ore leachate at a dosage of 1.5 g/L, resulting in a U(VI) concentration of lower than 0.017 mg/L in the effluent. Comparative tests demonstrated the superiority of nZVMn over other manganese oxides (Mn2O3 and Mn3O4). Characterization analyses, including X-ray diffraction and depth profiling X-ray photoelectron spectroscopy, combined with density functional theory calculation revealed that the reaction mechanism of U(VI) using nZVMn involved reduction, surface complexation, hydrolysis precipitation, and electrostatic attraction. This study provides a new alternative for efficient removal of U(VI) from wastewater and improves the understanding of the interaction between nZVMn and U(VI).


Assuntos
Manganês , Urânio , Manganês/análise , Urânio/análise , Águas Residuárias , Adsorção , Água/química , Íons , Concentração de Íons de Hidrogênio , Cinética
3.
J Environ Manage ; 251: 109563, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542625

RESUMO

Manganese dioxide (MnO2) with different morphologies (tube-, wire-, rod-, and flower-like) was synthesized via hydrothermal method and then applied for thallium (Tl) removal from wastewater. During material synthesis, short reaction time (6 h) and low temperature (110 °C) were prone to form polycrystalline flower-like birnessite type MnO2, while long reaction time (24 h) and high temperature (240 °C) were inclined to produce polycrystalline wire-like birnessite type MnO2. Moderate reaction time (12 h) with low temperature at 120 °C/140 °C led to formation of mono-crystalline rod- and tube-like α-MnO2, respectively. Wire-like MnO2 was the most effective adsorbent for Tl(I) removal from both the synthetic and industrial wastewaters. The MnO2 of four morphologies exhibited similarly high Tl(III) removal owing to the precipitation of Tl(III) as Tl2O3. Effective Tl(I)/Tl(III) removal (99%) was achieved with wire-like MnO2 at an initial pH of 6 and an adsorbent dosage of 0.25 g/L. The Tl(I)/Tl(III) adsorption can be described with the pseudo-second-order kinetic. The Tl(I) removal was best fitted with the Freundlich model, with a maximum adsorption capacity of 450 mg/g. While the Tl(III) removal was best fitted with the Langmuir model, with an extremely high capacity of 6250 mg/g. Based on the results from XRD, SEM-EDS, FT-IR, and XPS analyses, the mechanisms of Tl removal using wire-like MnO2 are primarily surface complexation and oxidative precipitation. Overall, wire-like MnO2 is a highly effective adsorbent for Tl removal from both synthetic and actual wastewaters.


Assuntos
Compostos de Manganês , Poluentes Químicos da Água , Adsorção , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Tálio , Águas Residuárias
4.
Water Sci Technol ; 79(10): 1995-2004, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31294716

RESUMO

Given the adverse health effects of antimony (Sb), there is an increased focus on developing methods to remove this toxic metal from contaminated water bodies. To effectively remove Sb(V), a new nanostructured Fe-Cu-Al trimetal oxide was fabricated using co-precipitation method at ambient temperature. The Fe-Cu-Al trimetal oxide was very effective at removing Sb(V) from water; it had a maximal adsorption capacity of 169.1 mg/g at pH 7.0, a capacity that was competitive with most other reported adsorbents. The obtained amorphous oxide had a high pH point of zero charge (pHpzc = 8.8) and good adsorption Sb(V) efficiency over a wide pH range (4.0-8.0). Sb(V) uptake was achieved mainly through an ion-exchange reaction between Sb(V) ions and hydroxyl groups on the surface of the oxide. Given its good removal performance, high selectivity, and simple synthesis, this novel Fe-Cu-Al trimetal oxide offers a promising alternate for removing antimony contamination from aquatic environments.


Assuntos
Antimônio , Nanoestruturas , Adsorção , Óxidos
5.
Environ Monit Assess ; 188(7): 413, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27315126

RESUMO

China is one of the largest producers and consumers of lead and zinc in the world. Lead and zinc mining and smelting can release hazardous heavy metals such as Cd, Pb, Zn, and As into soils, exerting health risks to human by chronic exposure. The concentrations of Cd, Zn, Pb, and As in soil samples collected from a Pb-Zn mining area with exploitation history of 60 years were investigated. Health risks of the heavy metals in soil were evaluated using US Environmental Protection Agency (US EPA) recommended method. A geo-statistical technique (Kriging) was used for the interpolation of heavy metals pollution and Hazard Index (HI). The results indicated that the long-term Pb/Zn mining activities caused the serious pollution in the local soil. The concentrations of Cd, As, Pb, and Zn in topsoil were 40.3 ± 6.3, 103.7 ± 37.3, 3518.4 ± 896.1, and 10,413 ± 2973.2 mg/kg dry weight, respectively. The spatial distribution of the four metals possessed similar patterns, with higher concentrations around Aayiken (AYK), Maseka (MSK), and Kuangshan (KS) area and more rapidly dropped concentrations at upwind direction than those at downwind direction. The main pollutions of Cd and Zn were found in the upper 60 cm, the Pb was found in the upper 40 cm, and the As was in the upper 20 cm. The mobility of metals in soil profile of study area was classed as Cd > Zn â‰« Pb > As. Results indicated that there was a higher health risk (child higher than adult) in the study area. Pb contributed to the highest Hazard Quotient (57.0 ~ 73.9 %) for the Hazard Index.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Mineração , Poluentes do Solo/análise , Solo/química , Adulto , Criança , China , Humanos , Chumbo/análise , Medição de Risco , Solo/normas , Análise Espacial , Estados Unidos , Zinco/análise
6.
Environ Sci Technol ; 48(17): 10316-22, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25093452

RESUMO

In our previous studies, a synthesized Fe-Mn binary oxide was found to be very effective for both As(V) and As(III) removal in aqueous phase, because As(III) could be easily oxidized to As(V). As(III) oxidation and As(V) sorption by the Fe-Mn binary oxide may also play an important role in the natural cycling of As, because of its common occurrence in the environment. In the present study, the respective role of Fe and Mn contents present in the Fe-Mn binary oxide on As(III) removal was investigated via a direct in situ determination of arsenic speciation using X-ray absorption spectroscopy. X-ray absorption near edge structure results indicate that Mn atoms exist in a mixed valence state of +3 and +4 and further confirm that MnOx (1.5 < x < 2) content is mainly responsible for oxidizing As(III) to As(V) through a two-step pathway [reduction of Mn(IV) to Mn(III) and subsequent Mn(III) to Mn(II)] and FeOOH content is dominant for adsorbing the formed As(V). No significant As(III) oxidation by pure FeOOH had been observed during its sorption, when the system was exposed to air. The extended X-ray absorption fine structure results reveal that the As surface complex on both the As(V)- and As(III)-treated sample surfaces is an inner-sphere bidentate binuclear corner-sharing complex with an As-M (M = Fe or Mn) interatomic distance of 3.22-3.24 Å. In addition, the MnOx and FeOOH contents exist only as a mixture, and no solid solution is formed. Because of its high effectiveness, low cost, and environmental friendliness, the Fe-Mn binary oxide would play a beneficial role as both an efficient oxidant of As(III) and a sorbent for As(V) in drinking water treatment and environmental remediation.


Assuntos
Arsênio/isolamento & purificação , Compostos Férricos/química , Compostos de Manganês/química , Óxidos/química , Espectroscopia por Absorção de Raios X , Adsorção , Oxirredução , Padrões de Referência , Temperatura , Raios X
7.
Environ Monit Assess ; 186(3): 1561-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24126907

RESUMO

To evaluate the contamination of organochlorine pesticides (OCPs) in marine organisms and their potential health risk on consumers in the northern Yellow Sea of China, mollusks, wild shrimps, and crabs were collected from the Yantai coast, and the OCP contents in the samples were analyzed and compared. The results indicate that all the samples have been contaminated by OCPs, and OCP concentrations varied in individual species and in sampling sites. Among the studied OCPs, ∑HCH and ∑DDT concentrations ranged from 0.91 to 13.92 ng g(-1) and from 10.16 to 411.19 ng g(-1), respectively. Meretrix was highly enriched with HCHs, while the highest DDT concentration was found in Crassostrea. For the OCP isomers, ß-HCH was the predominant isomer of HCHs, and p,p'-DDE concentration was much higher than other isomers of DDTs. The concentrations of other OCPs (HCB, t-CHL, endrin, and mirex) were relatively low. For the shrimp and crab samples, Alpheus distinguendus samples accumulated a higher level of HCHs but lower DDTs than Oratosquilla aratoria and Carcinoplax vestitus in all sampling areas. HCHs in the samples of contrast area were not significantly lower than that of the sewage outfall area and port area, whereas DDTs in the samples of contrast area were relatively lower than that of the other two areas. Generally, all the OCP contents in the samples are in the range of the edible hygienic criteria except the total concentration of DDTs in Crassostrea.


Assuntos
Organismos Aquáticos/metabolismo , Monitoramento Ambiental , Hidrocarbonetos Clorados/metabolismo , Praguicidas/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , China
8.
J Hazard Mater ; 471: 134464, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38688219

RESUMO

Developing highly efficient adsorbents for the removal of trace thallium(I) (Tl+) is crucial for addressing environmental challenges. In this study, we successfully synthesized cubic Prussian blue (PB) loading on filter papers using an intermediate layer (dopamine/polyethyleneimine) via in-situ methods. The as-prepared PB-modified FP demonstrated outstanding anti-interference properties and light-enhanced adsorption performance for Tl+ (0.5 mg/L) under ultraviolet (UV) irradiation, exhibiting twice the effectiveness compared to dark conditions, even in acidic and coexisting ionic environments. This indicated its suitability for treating complex Tl+-contaminated water. Notably, the removal efficiency for trace Tl+ was almost 100%, with a maximum experimental adsorption capacity of 86.2 mg/g after 1-h photo-promoted adsorption under 365 nm UV. Characterization results supported a proposed photo-driven redox mechanism that elucidated the interaction between Tl+ and PB-modified FP. Specifically, the accelerated Fe(III) to Fe(II) redox reaction facilitated Tl+ accommodation on the surface and/or lattice of PB, enhancing Tl+ adsorption by compensating for missed positive charges. This study provides valuable insights into utilizing PB-based materials to enhance the photo-enhanced Tl+ adsorption capacity in a cost-effective, easy-to-synthesize, and environmentally friendly manner.

9.
Bull Environ Contam Toxicol ; 90(6): 679-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23525696

RESUMO

To evaluate the contamination of polybrominated diphenyl ethers (PBDEs) in marine organisms of the northern Yellow Sea of China, mollusks, wild shrimps and crabs were collected from the Yantai coast and ten PBDE congeners levels in the samples were analyzed and compared. The results indicate all the samples have been contaminated by PBDEs and PBDEs concentrations varied in individual species and in sampling sites. The concentration range of ΣPBDEs in the samples was 0.23-10.56 ng/g d.w. below the national edible criteria 40 ng/g d.w.. Congener compositions were mainly dominated by BDE 209.


Assuntos
Crustáceos/química , Éteres Difenil Halogenados/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Animais , China , Limite de Detecção
10.
J Hazard Mater ; 442: 130132, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303357

RESUMO

Antimony is a highly toxic pollutant and its removal from water gains increasing attention. To effectively remove both Sb(III) and Sb(V), a novel lanthanum-manganese binary oxide (L1M2BO) adsorbent was synthesized by a simple oxidation coupled with precipitation method. The as-prepared L1M2BO was detailedly characterized by the XRD, SEM, TEM, BET, FTIR and XPS techniques. It is amorphous and irregular in shape, with a particle size of 50-100 nm and a specific surface area of 180.4 m2/g. A remarkable synergistic effect between the lanthanum hydroxide and Mn oxide in improving antimony adsorption is shown. The maximum adsorption capacities of Sb(III) and Sb(V) are 364.6 mg/g and 131.1 mg/g at pH 7.0, respectively, which outcompete most of reported adsorbents. The adsorption behaviors of antimony fitted well the pseudo-second-order kinetic and Freundlich models. The adsorption mechanism of Sb(V) involves mainly the replacement of surface metal hydroxyl and forming inner-sphere complex. While the Sb(III) removal is a more complicated process, containing both Sb(III) adsorption and oxidation to Sb(V). Furthermore, the spent L1M2BO sorbent can be regenerated and reused. The L1M2BO could be used as an attractive adsorbent for antimony removal, owing to its easily fabrication, high effectiveness and reusability.


Assuntos
Antimônio , Poluentes Químicos da Água , Antimônio/química , Manganês , Lantânio , Óxidos/química , Adsorção , Poluentes Químicos da Água/química
11.
Chemosphere ; 318: 137971, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708777

RESUMO

Zero-valent manganese (ZVMn) possesses high reducibility in theory, while sulfide exhibits strong affinity towards a variety of heavy metals owing to the low solubility of metal sulfides. Yet the performance and mechanisms on using sulfidized zero-valent manganese (SZVMn) to remove thallium (Tl) from wastewater still remain unclear. In this study, the performance of Tl(I) removal using SZVMn synthesized by borohydrides reduction followed by sulfides modification, with and without liquid nitrogen treatment, was compared and the mechanism behind was investigated. The results show that at a S/Mn molar ratio of 1.0, liquid nitrogen modified SZVMn (LSZVMn) possessed more interior channels and pores than SZVMn, with 65.3% higher specific surface area and 73.7% higher porosity, leading to 6.4-8.1% improvement in adsorption of Tl(I) at pH 4-10. LSZVMn showed effectiveness and robustness in Tl(I) removal in the presence of co-existing ions up to 0.1 M. The adsorption of Tl(I) conformed to the pseudo-1st-order kinetic model, and followed the Langmuir isothermal model, with the maximum Tl adsorption capacity of 264.9 mg·g-1 at 288 K. The mechanism of Tl(I) removal with SZVMn was found to include sulfidation-induced precipitation, manganese reduction, surface complexation, and electrostatic attraction. The liquid nitrogen pretreatment embrittled and cracked the outer shell of S/Mn compounds, resulted in a highly hierarchical structure, enhancing the manganese reduction and improving the Tl(I) removal. Based on the above results, the SZVMn and its liquid nitrogen-modified derivatives are novel and effective environmental materials for Tl(I) removal from wastewater, and the application of SZVMn to the removal of other pollutants merits investigation in future study.


Assuntos
Tálio , Poluentes Químicos da Água , Tálio/análise , Águas Residuárias , Manganês , Poluentes Químicos da Água/análise , Adsorção , Nitrogênio
12.
Ecotoxicology ; 21(6): 1726-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22707040

RESUMO

The port city of Yantai, in Shandong province China is located on Sishili Bay in the northern Yellow Sea. Intense human activity associated with urban sewage discharge, as well as industrial and maritime activities, have stressed the Sishili Bay coastal ecosystem with anthropogenic pollution. The aim of this study was to measure the levels of heavy metal in the sediment and marine organisms of economic value from various sites within Sishili Bay, and to evaluate the data in relation to the potential health risk on human consumers. For this purpose, sediment and wild shrimps and crab were collected from three areas (a total of 13 sampling sites) of the Yantai coast and analyzed for six heavy metals (Cu, Zn, Cr, Ni, Pb, and As). For comparison, the concentrations of the same heavy metals in seven kinds of mollusks obtained from local aquaculture were also determined. The findings showed that the concentrations of heavy metals in the sediment of Yantai coast followed the order Zn > ≈Cr > Cu ≈ Ni ≈ Pb > As, and all were within the safe levels of national standard. However, the concentrations of the heavy metals varied significantly in the organism samples, indicating the different accumulative abilities of the species sampled. For the wild marine organisms, Pb concentrations in some shrimp and crab samples exceeded the standard limit of seafood safety criteria and As concentrations in all samples were over the limit. Moreover, the As levels in mollusks from aquaculture exceeded the limit of seafood standard criteria. These results indicated that the heavy metal levels in the marine organisms in the studied areas were moderate but unacceptable for As from the view of safety of seafood. Furthermore, it is very necessary and important to further study toxicological and ecological effect of As in the coast of northern Yellow sea to understand the potential for risk to human and environmental health.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Moluscos/química , Poluentes Químicos da Água/análise , Animais , Aquicultura , Baías/análise , Baías/química , China , Sedimentos Geológicos/análise , Alimentos Marinhos/análise
13.
ACS Appl Mater Interfaces ; 14(22): 26044-26056, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609300

RESUMO

Membrane surface fouling is often reversible as it can be mitigated by enhancing the crossflow shear force. However, membrane internal fouling is often irreversible and thus more challenging. In this study, we developed a new superhydrophilic poly(vinylidene fluoride) (P-PVDF) membrane confined with nano-Fe3O4 in the top skin layer via reverse filtration to reduce internal fouling. The surface of the P-PVDF membrane confined with nano-Fe3O4 had superwetting properties (water contact angle reaching 0° within 1 s), increased roughness (from 182 to 239 nm), and enhanced water affinity. The Fe3O4@P-PVDF membrane surface showed a thicker and enhanced hydration layer, which prevented foulants from approaching membrane surfaces and pores, thereby improving the rejection. For example, when 50 ppm humic acid (HA) solution was used as the feed, the removal efficiency of the Fe3O4@P-PVDF membrane was ∼67%, while the HA removal of the P-PVDF membrane was only ∼20%. The results from the resistance-in-series model showed that nanoconfinement of Fe3O4 in the top skin layer of the membrane allowed foulants to accumulate on the membrane surface (i.e., surface fouling) rather than within the internal pores (i.e., internal fouling). The filtration results under crossflow fouling and cleaning confirmed that the Fe3O4@P-PVDF membrane had higher surface fouling but it was much more reversible and much lower internal fouling compared with the control membrane. Our fouling analysis offers new insights into mass transfer mechanisms of the membrane with a nanoconfinement-enhanced hydration layer. This study provides an effective strategy to develop membranes with low internal fouling propensities.

14.
Sci Rep ; 12(1): 72, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997039

RESUMO

In this study, amorphous hydrous titanium dioxide was synthesized by a facile precipitation method at room temperature, aiming to effectively remove thallium(I) from water. The titanium dioxide prepared using ammonia as precipitant (TiO2I) is more effective for thallium(I) uptake than the one synthesized with sodium hydroxide (TiO2II). The TiO2 obtained particles are amorphous, aggregates of many nanoparticles and irregular in shape. The thallium(I) uptake increases with the rise of solution pH value. Under neutral pH conditions, the maximal thallium(I) adsorption capacities of TiO2I and TiO2II are 302.6 and 230.3 mg/g, respectively, outperforming most of the reported adsorbents. The amorphous TiO2 has high selectivity towards thallium(I) in the presence of multiple cations such as K+, Ca2+, Mg2+, Zn2+ and Ni2+. Moreover, the TiO2I is efficient in removing thallium(I) from real river water and mining wastewater. Additionally, the spent TiO2I can be regenerated using hydrochloric acid solution and reused. The Tl(I) adsorption is achieved via replacing the H+ in hydroxyl group on the surface of TiO2 and forming inner-sphere surface complexes. Owing to its high efficiency, facile synthesis and environmental friendliness, the TiO2I has the potential to be used as an alternative adsorbent to remove Tl(I) from water.

15.
Chemosphere ; 292: 133321, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34929267

RESUMO

Inorganic pollution induced by smelting waste has threatened the safety of environment, whereas the impacts on farmlands with regards to potentially toxic elements (PTEs) receive insufficient attention. Herein, the contents, transfer pathways and potential risks of the PTEs in common crops were examined from different farmlands distributed around an indigenous Zn-smelting area in Guizhou, China. The results showed that Tl in cabbage (Brassica oleracea L.) (up to 3.74 mg/kg) and radish (Raphanus sativus L.) (up to 1.16 mg/kg) at some sites exceeded the maximum permissible level (MPL) (0.5 mg/kg) for food, and, under the same pollution condition, cabbage and radish were more likely to enrich PTEs, and the edible portion of maize was not prone to Tl risk. Hazard quotient calculations of Tl, Ba, and U were greater than 1, indicating the edible risk of crops for these PTEs. Further characterization of selected soils revealed that MnFe2O4 and Fe2O3 controlled the phase transformation of Tl(III) in rhizospheric soils. Furthermore, distinctive mullite was detected in the soil which confirmed the contribution of high temperature smelting to PTEs pollution. The findings indicate an emergent need for soil remediation around historical indigenous metal smelting areas for the sake of food security.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
16.
J Hazard Mater ; 438: 129529, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35999721

RESUMO

Bio-aerogels hold great promise for selective oil separation from water due to their light weight and high sustainability. However, how the fabrication methods impact the elasticity and oil sorption performance of bio-aerogels still needs systematic comparison and in-depth investigation. In this study, the fabrication of hydrophobic bio-aerogels with good elasticity and reusability was optimized using a factorial design based on the dosages of bagasse-derived cellulose nanofiber, sodium alginate, and calcium carbonate. The role of each key fabrication step, including ice-templating, calcium crosslinking, solvent dehydration, freeze-drying, and silanization, played in the material properties was also elucidated. The optimized bio-aerogels had a low density (7.55 mg/cm3), high porosity (99.47%), large specific surface area (39 m2/g), and strong hydrophobicity (water contact angle of 135°). In addition, the bio-aerogels exhibited outstanding selective oil separation ability towards the oil-water mixture, with oil sorption capacity of 89-126 times its weight. The in-situ calcium crosslinking and solvent dehydration were vital to create porosity and preserve the microstructure of the bio-aerogels. The chemical vapor deposition rendered the bio-aerogels hydrophobic and oleophilic, greatly enhancing the separability of oil from the water-oil mixture.


Assuntos
Cálcio , Óleos , Celulose/química , Desidratação , Géis/química , Humanos , Óleos/química , Solventes
17.
Sci Total Environ ; 805: 150237, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818805

RESUMO

Water pollution caused by the release of manganese (Mn2+) and ammonia nitrogen (NH4+-N) from electrolytic manganese residue (EMR) generated from industrial activities poses a serious threat to ecosystems and human health. In this study, an integrated process consisting sequentially of hydroxide sedimentation, struvite precipitation, breakpoint chlorination, and ferric chloride coagulation was optimized to remove Mn2+ and NH4+-N from EMR leachate, and to address the issue of residual orthophosphate caused by struvite precipitation. The precipitates were characterized using X-ray diffraction, scanning electron microscopy, and thermogravimetric analyses. Results show that Mn2+ ions and the resulting chemical oxygen demand (COD) were mainly removed using hydroxide precipitation at a sedimentation pH of 10.2, with poor-crystalline manganese hydroxide as the main precipitate. NH4+-N was primarily removed and recovered using struvite precipitation with well crystalline struvite as the main product, and then further eliminated using breakpoint chlorination. The residual orthophosphate introduced by struvite precipitation is successfully removed with ferric coagulation, and the effluent pH (7.5) is also lowered to discharge limits by means of hydrolysis of ferric coagulant. The concentration of COD, Mn2+, NH4+-N, and orthophosphate concentrations in the final effluent were 30.52 ± 9.38, 0.026 ± 0.013, 0.87 ± 0.01, and 0.06 ± 0.002 mg/L, respectively, meeting all local discharge standards. This combined process has robust pollutant removal efficiency, high resource recovery potential and few environmental constraints; thus, it is recommended as a potential solution for the treatment of Mn2+- and NH4+-N-rich acid mine drainage.


Assuntos
Compostos de Amônio , Fosfatos , Ecossistema , Halogenação , Humanos , Hidróxidos , Manganês , Estruvita
18.
Water Sci Technol ; 64(9): 1828-34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22020475

RESUMO

Due to urgency of the accidental pollution events (APE) on one side and the variability in water quality data on the other side, a new online monitoring and management system (OMMS) was developed for the purpose of sustainable water quality management and human health protection as well. The Biological Early Warning System (BEWS) based on the behavioral responses (behavior strength) of medaka (Oryzias latipes) were built in combination with the physico-chemical factor monitoring system (PFMS) in OMMS. OMMS included a monitoring center and six monitoring stations. Communication between the center and the peripheral stations was conducted by the General Packet Radio Service (GPRS) network transmission complemented by a dial-up connection for use when GPRS was unavailable. OMMS could monitor water quality continuously for at least 30 days. Once APEs occurred, OMMS would promptly notify the administrator to make some follow up decisions based on the Emergency Treatment of APE. Meanwhile, complex behavioral data were analyzed by Self-Organizing Map to properly classify behavior response data before and after contamination. By utilizing BEWS, PFMS and the modern data transmission in combination, OMMS was efficient in monitoring the water quality more realistically.


Assuntos
Monitoramento Ambiental/métodos , Sistemas On-Line , Poluição da Água/prevenção & controle , Abastecimento de Água/análise , China , Geografia , Poluição da Água/estatística & dados numéricos
19.
Front Chem ; 9: 840446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127660

RESUMO

To study the structure-performance relationship, a series of nanostructured Fe-Cu binary oxides (FCBOs) were prepared by varying synthesis conditions. The obtained binary oxides were well characterized using X-ray diffraction (XRD), transmission electron microscope (TEM), Brunner-Emmet-Teller (BET), magnetic and Zeta potential measurement techniques. Both As(V) and As(III) sorption on the FCBOs were evaluated by batch tests. Results show that the surface structure and crystallinity of FCBOs are greatly dependent on preparation conditions. The crystallinity of FCBOs gradually increases as the synthesis pH value increasing from 9.0 to 13.0, from amorphous phase to well-crystalline one. Simultaneously, the morphology change of FCBOs from irregular agglomerate to relatively uniform polyhedron has been observed. The sorption of arsenic is greatly influenced by the crystallinity and structure of FCBOs, decreasing with increasing degree of crystallinity. The amorphous FCBO has higher surface hydroxyl density than well-crystalline one, which might be the reason of higher sorption performance. As(V) is sorbed by the FCBOs via formation of inner-sphere surface complexes and As(III) is sorbed through formation of both inner- and outer-sphere surface complexes. This investigation provides new insights into structure-performance relationship of the FCBO system, which are beneficial to develop new and efficient sorbents.

20.
Environ Technol ; 41(20): 2564-2574, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30691347

RESUMO

A novel granular Fe-Mn (GFM) binary oxide sorbent, with a diameter of approximate 2.0 mm and a length of 2.0-3.0 mm, was successfully prepared using extrusion granulation method in this study. The GFM sorbent is highly porous with a BET-specific surface area of 210.3 m2/g. It shows high effectiveness in simultaneously adsorbing As(V) and As(III). The maximal sorption capacities for As(V) and As(III) are 33.2 and 50.7 mg/g at pH 7.0 ± 0.1, respectively, which are superior to most of granular sorbents reported in the literature. The present Ca2+, Mg2+, humic acids and fulvic acids do not have obvious influence on the arsenic sorption. But, coexisting anions affect negatively arsenic sorption in the following order: H2PO4 - > SiO3 2- > HCO3 - > SO4 2-. NaOH solution is an effective eluent for regeneration of the arsenic-loaded GFM. The GFM packed in the fixed-bed column can treat approximately 3400 and 6500 bed volumes of simulated groundwater containing 233 µg/L As(V) and As(III), respectively, before the arsenic concentration in the effluent reached a drinking water limit of 10 µg/L. The features of high effectiveness, selectivity and reusability make the GFM a potential alternative to remove simultaneously As(V) and As(III) from groundwater.


Assuntos
Arsênio , Arsenitos , Poluentes Químicos da Água/análise , Purificação da Água , Adsorção , Arseniatos , Concentração de Íons de Hidrogênio , Cinética , Álcool de Polivinil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA