Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Ann Neurol ; 96(1): 87-98, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661228

RESUMO

OBJECTIVE: Exposure to heavy metals has been reported to be associated with impaired cognitive function, but the underlying mechanisms remain unclear. This pilot study aimed to identify key heavy metal elements associated with cognitive function and further explore the potential mediating role of metal-related DNA methylation. METHODS: Blood levels of arsenic, cadmium, lead, copper, manganese, and zinc and genome-wide DNA methylations were separately detected in peripheral blood in 155 older adults. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Least absolute shrinkage and selection operator penalized regression and Bayesian kernel machine regression were used to identify metals associated with cognitive function. An epigenome-wide association study examined the DNA methylation profile of the identified metal, and mediation analysis investigated its mediating role. RESULTS: The MMSE scores showed a significant decrease of 1.61 (95% confidence interval [CI]: -2.64, -0.59) with each 1 standard deviation increase in ln-transformed arsenic level; this association was significant in multiple-metal models and dominated the overall negative effect of 6 heavy metal mixture on cognitive function. Seventy-three differentially methylated positions were associated with blood arsenic (p < 1.0 × 10-5). The methylation levels at cg05226051 (annotated to TDRD3) and cg18886932 (annotated to GAL3ST3) mediated 24.8% and 25.5% of the association between blood arsenic and cognitive function, respectively (all p < 0.05). INTERPRETATION: Blood arsenic levels displayed a negative association with the cognitive function of older adults. This finding shows that arsenic-related DNA methylation alterations are critical partial mediators that may serve as potential biomarkers for further mechanism-related studies. ANN NEUROL 2024;96:87-98.


Assuntos
Cognição , Metilação de DNA , Epigenoma , Análise de Mediação , Metais Pesados , Humanos , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Feminino , Masculino , Metais Pesados/sangue , Idoso , Cognição/efeitos dos fármacos , Epigenoma/genética , Projetos Piloto , Arsênio/sangue , Arsênio/toxicidade , Estudo de Associação Genômica Ampla , Pessoa de Meia-Idade , Disfunção Cognitiva/genética , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/sangue , Idoso de 80 Anos ou mais , Testes de Estado Mental e Demência
2.
Cell Mol Life Sci ; 81(1): 48, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236296

RESUMO

The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.


Assuntos
Medo , Genes Precoces , Fatores de Troca do Nucleotídeo Guanina , Memória , Transdução de Sinais , Animais , Camundongos , Proteína 1 de Resposta de Crescimento Precoce/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Proto-Oncogênicas c-fos
3.
BMC Genomics ; 25(1): 454, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720264

RESUMO

BACKGROUND: In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS: We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS: In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.


Assuntos
Anuros , Hibernação , Metabolômica , Músculo Esquelético , Animais , Hibernação/genética , Hibernação/fisiologia , Músculo Esquelético/metabolismo , Anuros/genética , Anuros/metabolismo , Anuros/fisiologia , Miocárdio/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Estações do Ano , Metaboloma , Tibet
4.
Planta ; 260(1): 22, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847958

RESUMO

MAIN CONCLUSION: The SiMBR genes in foxtail millet were identified and studied. Heterologous expression of SiMBR2 in Arabidopsis can improve plant tolerance to drought stress by decreasing the level of reactive oxygen species. Foxtail millet (Setaria italica L.), a C4 crop recognized for its exceptional resistance to drought stress, presents an opportunity to improve the genetic resilience of other crops by examining its unique stress response genes and understanding the underlying molecular mechanisms of drought tolerance. In our previous study, we identified several genes linked to drought stress by transcriptome analysis, including SiMBR2 (Seita.7G226600), a member of the MED25 BINDING RING-H2 PROTEIN (MBR) gene family, which is related to protein ubiquitination. Here, we have identified ten SiMBR genes in foxtail millet and conducted analyses of their structural characteristics, chromosomal locations, cis-acting regulatory elements within their promoters, and predicted transcription patterns specific to various tissues or developmental stages using bioinformatic approaches. Further investigation of the stress response of SiMBR2 revealed that its transcription is induced by treatments with salicylic acid and gibberellic acid, as well as by salt and osmotic stresses, while exposure to high or low temperatures led to a decrease in its transcription levels. Heterologous expression of SiMBR2 in Arabidopsis thaliana enhanced the plant's tolerance to water deficit by reducing the accumulation of reactive oxygen species under drought stress. In summary, this study provides support for exploring the molecular mechanisms associated with drought resistance of SiMBR genes in foxtail millet and contributing to genetic improvement and molecular breeding in other crops.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Setaria (Planta) , Estresse Fisiológico , Setaria (Planta)/genética , Setaria (Planta)/fisiologia , Setaria (Planta)/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Plantas Geneticamente Modificadas , Família Multigênica , Regiões Promotoras Genéticas/genética , Espécies Reativas de Oxigênio/metabolismo
5.
Int J Obes (Lond) ; 48(6): 849-858, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38341506

RESUMO

OBJECTIVE: Fatty acids play a critical role in the proper functioning of the brain. This study investigated the effects of a high-fat (HF) diet on brain fatty acid profiles of offspring exposed to maternal gestational diabetes mellitus (GDM). METHODS: Insulin receptor antagonist (S961) and HF diet were used to establish the GDM animal model. Brain fatty acid profiles of the offspring mice were measured by gas chromatography at weaning and adulthood. Protein expressions of the fatty acid transport pathway Wnt3/ß-catenin and the target protein major facilitator superfamily domain-containing 2a (MFSD2a) were measured in the offspring brain by Western blot. RESULTS: Maternal GDM increased the body weight of male offspring (P < 0.05). In weaning offspring, factorial analysis showed that maternal GDM increased the monounsaturated fatty acid (MUFA) percentage of the weaning offspring's brain (P < 0.05). Maternal GDM decreased offspring brain arachidonic acid (AA), but HF diet increased brain linoleic acid (LA) (P < 0.05). Maternal GDM and HF diet reduced offspring brain docosahexaenoic acid (DHA), and the male offspring had higher DHA than the female offspring (P < 0.05). In adult offspring, factorial analysis showed that HF diet increased brain MUFA in offspring, and male offspring had higher brain MUFA than female offspring (P < 0.05). The HF diet increased brain LA in the offspring. Male offspring had higher level of AA than female offspring (P < 0.05). HF diet reduced DHA in the brains of female offspring. The brain protein expression of ß-catenin and MFSD2a in both weaning and adult female offspring was lower in the HF + GDM group than in the CON group (P < 0.05). CONCLUSIONS: Maternal GDM increased the susceptibility of male offspring to HF diet-induced obesity. HF diet-induced adverse brain fatty acid profiles in both male and female offspring exposed to GDM.


Assuntos
Encéfalo , Diabetes Gestacional , Dieta Hiperlipídica , Ácidos Graxos , Efeitos Tardios da Exposição Pré-Natal , Animais , Gravidez , Feminino , Diabetes Gestacional/metabolismo , Camundongos , Dieta Hiperlipídica/efeitos adversos , Encéfalo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Masculino , Ácidos Graxos/metabolismo , Modelos Animais de Doenças , Fenômenos Fisiológicos da Nutrição Materna
6.
J Transl Med ; 22(1): 48, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216927

RESUMO

BACKGROUND: Muscle-invasive bladder cancer (MIBC) is a highly aggressive disease with a poor prognosis. B cells are crucial factors in tumor suppression, and tertiary lymphoid structures (TLSs) facilitate immune cell recruitment to the tumor microenvironment (TME). However, the function and mechanisms of tumor-infiltrating B cells and TLSs in MIBC need to be explored further. METHODS: We performed single-cell RNA sequencing analysis of 11,612 B cells and 55,392 T cells from 12 bladder cancer patients and found naïve B cells, proliferating B cells, plasma cells, interferon-stimulated B cells and germinal center-associated B cells, and described the phenotype, gene enrichment, cell-cell communication, biological processes. We utilized immunohistochemistry (IHC) and immunofluorescence (IF) to describe TLSs morphology in MIBC. RESULTS: The interferon-stimulated B-cell subtype (B-ISG15) and germinal center-associated B-cell subtypes (B-LMO2, B-STMN1) were significantly enriched in MIBC. TLSs in MIBC exhibited a distinct follicular structure characterized by a central region of B cells resembling a germinal center surrounded by T cells. CellChat analysis showed that CXCL13 + T cells play a pivotal role in recruiting CXCR5 + B cells. Cell migration experiments demonstrated the chemoattraction of CXCL13 toward CXCR5 + B cells. Importantly, the infiltration of the interferon-stimulated B-cell subtype and the presence of TLSs correlated with a more favorable prognosis in MIBC. CONCLUSIONS: The study revealed the heterogeneity of B-cell subtypes in MIBC and suggests a pivotal role of TLSs in MIBC outcomes. Our study provides novel insights that contribute to the precision treatment of MIBC.


Assuntos
Estruturas Linfoides Terciárias , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Linfócitos B , Prognóstico , Músculos/patologia , Interferons , Microambiente Tumoral
7.
J Nutr ; 154(2): 590-599, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38159812

RESUMO

BACKGROUND: Polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), are critical for proper fetal brain growth and development. Gestational diabetes mellitus (GDM) could affect maternal-fetal fatty acid metabolism. OBJECTIVE: This study aimed to explore the effect of GDM and high-fat (HF) diet on the DHA transport signaling pathway in the placenta-brain axis and fatty acid concentrations in the fetal brain. METHODS: Insulin receptor antagonist (S961) and HF diet were used to establish an animal model of GDM. Eighty female C57BL/6J mice were randomly divided into control (CON), GDM, HF, and HF+GDM groups. The fatty acid profiles of the maternal liver and fetal brain were analyzed by gas chromatography. In addition, we analyzed the protein amounts of maternal liver fatty acid desaturase (FADS1/3), elongase (ELOVL2/5) and the regulatory factor sterol-regulatory element-binding protein (SREBP)-1c, and the DHA transport signaling pathway (Wnt3/ß-catenin/MFSD2a) of the placenta and fetal brain using western blotting. RESULTS: GDM promoted the decrease of maternal liver ELOVL2, ELOVL5, and SREBP-1c. Accordingly, we observed a significant decrease in the amount of maternal liver arachidonic acid (AA), DHA, and total n-3 PUFA and n-6 PUFA induced by GDM. GDM also significantly decreased the amount of DHA and n-3 PUFA in the fetal brain. GDM downregulated the Wnt3/ß-catenin/MFSD2a signaling pathway, which transfers n-3 PUFA in the placenta and fetal brain. The HF diet increased n-6 PUFA amounts in the maternal liver, correspondingly increasing linoleic acid, gamma-linolenic acid, AA, and total n-6 PUFA in the fetal brain, but decreased DHA amount in the fetal brain. However, HF diet only tended to decrease placental ß-catenin and MFSD2a amounts (P = 0.074 and P = 0.098, respectively). CONCLUSIONS: Maternal GDM could affect the fatty acid profile of the fetal brain both by downregulating the Wnt3/ß-catenin/MFSD2a pathway of the placental-fetal barrier and by affecting maternal fatty acid metabolism.


Assuntos
Diabetes Gestacional , Ácidos Graxos Ômega-3 , Humanos , Animais , Camundongos , Feminino , Gravidez , Diabetes Gestacional/metabolismo , Ácidos Graxos/metabolismo , Placenta/metabolismo , beta Catenina/metabolismo , Camundongos Endogâmicos C57BL , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Araquidônico , Encéfalo/metabolismo
8.
Theor Appl Genet ; 137(8): 190, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043952

RESUMO

KEY MESSAGE: Extensive and comprehensive phenotypic data from a maize RIL population under both low- and normal-Pi treatments were used to conduct QTL mapping. Additionally, we integrated parental resequencing data from the RIL population, GWAS results, and transcriptome data to identify candidate genes associated with low-Pi stress in maize. Phosphorus (Pi) is one of the essential nutrients that greatly affect the maize yield. However, the genes underlying the QTL controlling maize low-Pi response remain largely unknown. In this study, a total of 38 traits at both seedling and maturity stages were evaluated under low- and normal-Pi conditions using a RIL population constructed from X178 (tolerant) and 9782 (sensitive), and most traits varied significantly between low- and normal-Pi treatments. Twenty-nine QTLs specific to low-Pi conditions were identified after excluding those with common intervals under both low- and normal-Pi conditions. Furthermore, 45 additional QTLs were identified based on the index value ((Trait_under_LowPi-Trait_under_NormalPi)/Trait_under_NormalPi) of each trait. These 74 QTLs collectively were classified as Pi-dependent QTLs. Additionally, 39 Pi-dependent QTLs were clustered in nine HotspotQTLs. The Pi-dependent QTL interval contained 19,613 unique genes, 6,999 of which exhibited sequence differences with non-synonymous mutation sites between X178 and 9782. Combined with in silico GWAS results, 277 consistent candidate genes were identified, with 124 genes located within the HotspotQTL intervals. The transcriptome analysis revealed that 21 genes, including the Pi transporter ZmPT7 and the strigolactones pathway-related gene ZmPDR1, exhibited consistent low-Pi stress response patterns across various maize inbred lines or tissues. It is noteworthy that ZmPDR1 in maize roots can be sharply up-regulated by low-Pi stress, suggesting its potential importance as a candidate gene for responding to low-Pi stress through the strigolactones pathway.


Assuntos
Mapeamento Cromossômico , Fósforo , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Fósforo/metabolismo , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala , Genes de Plantas , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Simulação por Computador
9.
Theor Appl Genet ; 137(7): 158, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864891

RESUMO

Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.


Assuntos
Fósforo , Amido , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Amido/metabolismo , Fósforo/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Fenótipo
10.
Theor Appl Genet ; 137(7): 172, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935162

RESUMO

Phosphorus (P) is an essential element for plant growth, and its deficiency can cause decreased crop yield. This study systematically evaluated the low-phosphate (Pi) response traits in a large population at maturity and seedling stages, and explored candidate genes and their interrelationships with specific traits. The results revealed a greater sensitivity of seedling maize to low-Pi stress compared to that at maturity stage. The phenotypic response patterns to low-Pi stress at different stages were independent. Chlorophyll content was found to be a potential indicator for screening low-Pi-tolerant materials in the field. A total of 2900 and 1446 significantly associated genes at the maturity and seedling stages were identified, respectively. Among these genes, 972 were uniquely associated with maturity traits, while 330 were specifically detected at the seedling stage under low-Pi stress. Moreover, 768 and 733 genes were specifically associated with index values (low-Pi trait/normal-Pi trait) at maturity and seedling stage, respectively. Genetic network diagrams showed that the low-Pi response gene Zm00001d022226 was specifically associated with multiple primary P-related traits under low-Pi conditions. A total of 963 out of 2966 genes specifically associated with traits under low-Pi conditions or index values were found to be induced by low-Pi stress. Notably, ZmSPX4.1 and ZmSPX2 were sharply up-regulated in response to low-Pi stress across different lines or tissues. These findings advance our understanding of maize's response to low-Pi stress at different developmental stages, shedding light on the genes and pathways implicated in this response.


Assuntos
Fenótipo , Fósforo , Plântula , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/genética , Fósforo/metabolismo , Genes de Plantas , Estudo de Associação Genômica Ampla , Clorofila/metabolismo , Locos de Características Quantitativas , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Polimorfismo de Nucleotídeo Único
11.
Sensors (Basel) ; 24(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38610445

RESUMO

Cardiovascular diseases pose a long-term risk to human health. This study focuses on the rich-spectrum mechanical vibrations generated during cardiac activity. By combining Fourier series theory, we propose a multi-frequency vibration model for the heart, decomposing cardiac vibration into frequency bands and establishing a systematic interpretation for detecting multi-frequency cardiac vibrations. Based on this, we develop a small multi-frequency vibration sensor module based on flexible polyvinylidene fluoride (PVDF) films, which is capable of synchronously collecting ultra-low-frequency seismocardiography (ULF-SCG), seismocardiography (SCG), and phonocardiography (PCG) signals with high sensitivity. Comparative experiments validate the sensor's performance and we further develop an algorithm framework for feature extraction based on 1D-CNN models, achieving continuous recognition of multiple vibration features. Testing shows that the recognition coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) of the 8 features are 0.95, 2.18 ms, and 4.89 ms, respectively, with an average prediction speed of 60.18 us/point, meeting the re-quirements for online monitoring while ensuring accuracy in extracting multiple feature points. Finally, integrating the vibration model, sensor, and feature extraction algorithm, we propose a dynamic monitoring system for multi-frequency cardiac vibration, which can be applied to portable monitoring devices for daily dynamic cardiac monitoring, providing a new approach for the early diagnosis and prevention of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Vibração , Humanos , Coração , Algoritmos , Fonocardiografia
12.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931601

RESUMO

Muscles play an indispensable role in human life. Surface electromyography (sEMG), as a non-invasive method, is crucial for monitoring muscle status. It is characterized by its real-time, portable nature and is extensively utilized in sports and rehabilitation sciences. This study proposed a wireless acquisition system based on multi-channel sEMG for objective monitoring of grip force. The system consists of an sEMG acquisition module containing four-channel discrete terminals and a host computer receiver module, using Bluetooth wireless transmission. The system is portable, wearable, low-cost, and easy to operate. Leveraging the system, an experiment for grip force prediction was designed, employing the bald eagle search (BES) algorithm to enhance the Random Forest (RF) algorithm. This approach established a grip force prediction model based on dual-channel sEMG signals. As tested, the performance of acquisition terminal proceeded as follows: the gain was up to 1125 times, and the common mode rejection ratio (CMRR) remained high in the sEMG signal band range (96.94 dB (100 Hz), 84.12 dB (500 Hz)), while the performance of the grip force prediction algorithm had an R2 of 0.9215, an MAE of 1.0637, and an MSE of 1.7479. The proposed system demonstrates excellent performance in real-time signal acquisition and grip force prediction, proving to be an effective muscle status monitoring tool for rehabilitation, training, disease condition surveillance and scientific fitness applications.


Assuntos
Algoritmos , Eletromiografia , Força da Mão , Eletromiografia/métodos , Humanos , Força da Mão/fisiologia , Masculino , Processamento de Sinais Assistido por Computador , Adulto , Dispositivos Eletrônicos Vestíveis , Músculo Esquelético/fisiologia , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Tecnologia sem Fio/instrumentação
13.
J Clin Nurs ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951120

RESUMO

AIM: We aimed to assess the level of knowledge, attitudes and practices regarding airway clearance among nurses and explore the factors affecting the knowledge, attitudes and practices. DESIGN: A questionnaire-based cross-sectional study. BACKGROUND: Airway clearance is an important method of eliminating excess secretions. In neuroscience nursing, nurses are important executors of airway management, and their knowledge, attitudes and practices can influence the effectiveness of airway clearance. METHODS: This study was conducted from July to September 2023 in four hospitals in Jiangsu Province, China. A structured questionnaire about airway clearance was designed and used to collect the data. The nurses used this questionnaire to self-rate. The STROBE checklist for cross-sectional studies was followed. RESULTS: The age, work experience, highest educational attainment and technical title of the nurses can significantly influence their knowledge. The age, highest educational attainment and technical title of the nurses can significantly impact their attitudes. Practice scores were significantly influenced by age, work experience, technical title, whether the nurses had received any training on airway clearance techniques, and whether the department developed procedures for implementing the airway clearance technology. Nurses' attitudes were significantly associated with knowledge and practice, and there was no significant correlation between knowledge and practice. CONCLUSION: This study showed that age, work experience, highest educational attainment and training were related to knowledge, attitudes and practices. These findings suggest that nursing managers can conduct airway clearance training according to age group, working experience and education level of the nurses. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution. IMPACT: The findings show that the level of knowledge, attitudes and practices related to airway clearance in neuroscience nursing among nurses were acceptable, which means that nurses can better perform airway management on patients. These findings serve as a significant reference for designing an airway clearance education for nurses and meet the needs of nurses in clinical nursing practice.

14.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062802

RESUMO

The muscarinic acetylcholine receptor M3 (M3-mAChR) is involved in various physiological and pathological processes. Owing to specific cardioprotective effects, M3-mAChR is an ideal diagnostic and therapeutic biomarker for cardiovascular diseases (CVDs). Growing evidence has linked M3-mAChR to the development of multiple CVDs, in which it plays a role in cardiac protection such as anti-arrhythmia, anti-hypertrophy, and anti-fibrosis. This review summarizes M3-mAChR's expression patterns, functions, and underlying mechanisms of action in CVDs, especially in ischemia/reperfusion injury, cardiac hypertrophy, and heart failure, opening up a new research direction for the treatment of CVDs.


Assuntos
Doenças Cardiovasculares , Receptor Muscarínico M3 , Humanos , Doenças Cardiovasculares/metabolismo , Animais , Receptor Muscarínico M3/metabolismo , Receptor Muscarínico M3/genética
15.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126105

RESUMO

The senescence of bone marrow mesenchymal stromal cells (MSCs) leads to the impairment of stemness and osteogenic differentiation capacity. In a previous study, we screened out stearoyl-CoA desaturase 2 (SCD2), the most evidently changed differential gene in lipid metabolism, using combined transcriptomic and metabolomic analyses, and verified that SCD2 could mitigate MSC senescence. However, the underlying molecular mechanism by which the rate-limiting enzyme of lipogenesis SCD2 manipulates MSC senescence has not been completely understood. In this study, we demonstrate that SCD2 over-expression alleviates MSC replicative senescence and ameliorates their osteogenic differentiation through the regulation of lipogenesis. Furthermore, SCD2 expression is reduced, whereas miR-200c-3p expression is elevated in replicative senescent MSCs. SCD2 is the direct target gene of miR-200c-3p, which can bind to the 3'-UTR of SCD2. MiR-200c-3p replenishment in young MSCs is able to diminish SCD2 expression levels due to epigenetic modulation. In addition, SCD2-rescued MSC senescence and enhanced osteogenic differentiation can be attenuated by miR-200c-3p repletion via suppressing lipogenesis. Taken together, we reveal the potential mechanism of SCD2 influencing MSC senescence from the perspective of lipid metabolism and epigenetics, which provides both an experimental basis for elucidating the mechanism of stem cell senescence and a novel target for delaying stem cell senescence.


Assuntos
Senescência Celular , Lipogênese , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Estearoil-CoA Dessaturase , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Lipogênese/genética , Senescência Celular/genética , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Osteogênese/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica , Células Cultivadas , Epigênese Genética
16.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731398

RESUMO

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Assuntos
Trifosfato de Adenosina , Carbono , Ácido Cítrico , Polietilenoimina , Proteínas Quinases , Pontos Quânticos , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Carbono/química , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Polietilenoimina/química , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo
17.
Aging (Albany NY) ; 16(11): 9558-9568, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38829778

RESUMO

Osteoarthritis (OA) is one of the most important causes of global disability, and dysfunction of chondrocytes is an important risk factor. The treatment of OA is still a challenge. Orexin-A is a hypothalamic peptide, and its effects in OA are unknown. In this study, we found that exposure to interleukin-1ß (IL-1ß) reduced the expression of orexin-2R, the receptor of orexin-A in TC-28a2 chondrocytes. Importantly, the senescence-associated ß-galactosidase (SA-ß-gal) staining assay demonstrated that orexin-A treatment ameliorates IL-1ß-induced cellular senescence. Importantly, the presence of IL-1ß significantly reduced the telomerase activity of TC-28a2 chondrocytes, which was rescued by orexin-A. We also found that orexin-A prevented IL-1ß-induced increase in the levels of Acetyl-p53 and the expression of p21. It is shown that orexin-A mitigates IL-1ß-induced reduction of sirtuin 3 (SIRT3). Silencing of SIRT3 abolished the protective effects of orexin-A against IL-1ß-induced cellular senescence. These results imply that orexin-A might serve as a promising therapeutic agent for OA.


Assuntos
Senescência Celular , Condrócitos , Interleucina-1beta , Orexinas , Senescência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Orexinas/farmacologia , Orexinas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Osteoartrite/metabolismo , Osteoartrite/tratamento farmacológico , Humanos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Animais , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Linhagem Celular
18.
World J Clin Cases ; 12(4): 737-745, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38322685

RESUMO

BACKGROUND: As one of the fatal diseases with high incidence, lung cancer has seriously endangered public health and safety. Elderly patients usually have poor self-care and are more likely to show a series of psychological problems. AIM: To investigate the effectiveness of the initial check, information exchange, final accuracy check, reaction (IIFAR) information care model on the mental health status of elderly patients with lung cancer. METHODS: This study is a single-centre study. We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022. These elderly patients with lung cancer were randomly divided into two groups, with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol. The differences in psychological distress, anxiety and depression, life quality, fatigue, and the locus of control in psychology were compared between these two groups, and the causes of psychological distress were analyzed. RESULTS: After the intervention, Distress Thermometer, Hospital Anxiety and Depression Scale (HADS) for anxiety and the HADS for depression, Revised Piper's Fatigue Scale, and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group (P < 0.05). After the intervention, Quality of Life Questionnaire Core 30 (QLQ-C30), Internal Health Locus of Control, and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group, and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group (P < 0.05). CONCLUSION: The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression, psychological distress, and fatigue, improving their tendencies on the locus of control in psychology, and enhancing their life qualities.

19.
Life Sci ; 340: 122437, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266813

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Xklp2 targeting protein (TPX2), a crucial oncogene exhibits high expression levels in various cancers including LUAD, may serve as a potential target for clinical intervention. Additionally, the growth of lung cancer is significantly influenced by the tumor microenvironment (TME). However, there have been no reports on experiments investigating TPX2 in tumor-infiltrating immune cells (TIICs) in LUAD. Therefore, we verified the effect of TPX2 on macrophage polarization both in vitro and in vivo. METHODS: We silenced TPX2 the gene in A549 cells and collected supernatants for macrophage culture. We then used flow cytometry and Western blot analysis to assess macrophage polarization. Additionally, we verified the expression of macrophage colony-stimulating factor (M-CSF), and CD163 by immunohistochemistry (IHC) in tissue specimens from LUAD patients. Finally, pathways related to TPX2's regulatory function in macrophage polarization were analyzed through whole genome sequencing, Western blotting, and immunofluorescence (IF). RESULTS: Silencing TPX2 can affect the ratio of CD80+ M1/CD163+ M2 and reduce the polarization of M0 macrophages to CD163+ M2 macrophages mainly by inhibiting the expression of M-CSF. In human LUAD tissues, the expression levels of TPX2, M-CSF and CD163 increased with the degree of differentiation. Silencing TPX2 inhibits the NF-κB signaling pathway, thereby reducing the expression of M-CSF, and affecting macrophage polarization. CONCLUSION: Silencing TPX2 can inhibit the expression of M-CSF by blocking the NF-κB signal, thereby reducing CD163+ M2 macrophage polarization. The TPX2/NF-κB/M-CSF signaling axis may be involved in regulating macrophage polarization.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , NF-kappa B/metabolismo , Fator Estimulador de Colônias de Macrófagos , Células Cultivadas , Macrófagos/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/patologia , Microambiente Tumoral , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo
20.
Neuroreport ; 35(7): 457-465, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526920

RESUMO

Modern medicine has unveiled that essential oil made from Aquilaria possesses sedative and hypnotic effects. Among the chemical components in Aquilaria, nerolidol, a natural sesquiterpene alcohol, has shown promising effects. This study aimed to unravel the potential of nerolidol in treating depression. Chronic unpredictable mild stress (CUMS) was utilized to induce depression-like behavior in mice, and open field test, sucrose preference, and tail suspension test was conducted. The impacts of nerolidol on the inflammatory response, microglial activation, and DNA methyltransferase 1 (DNMT1) were assessed. To study the regulatory role of DNMT1, lipopolysaccharide (LPS) was used to treat BV2 cells, followed by the evaluation of cell viability and DNMT1 level. Additionally, the influence of DNMT1 overexpression on BV2 cell activation was determined. Behavioral analysis revealed that nerolidol reduced depression-like behavior in mice. Nerolidol reduced the levels of inflammatory factors and microglial activation caused by CUMS. Nerolidol treatment was found to reduce DNMT1 levels in mouse brain tissue and it also decrease the LPS-induced increase in DNMT1 levels in BV2 cells. DNMT1 overexpression reversed the impacts of nerolidol on the inflammation response and cell activation. This study underscores the potential of nerolidol in reducing CUMS-induced depressive-like behavior and inhibiting microglial activation by downregulating DNMT1. These findings offer valuable insights into the potential of nerolidol as a therapeutic option for depression.


Assuntos
Depressão , Sesquiterpenos , Animais , Camundongos , Comportamento Animal , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Hipocampo , Lipopolissacarídeos , Metiltransferases/metabolismo , Microglia , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Estresse Psicológico/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA