Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Metab Eng ; 47: 143-152, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29551476

RESUMO

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is one of the most promising biomaterials expected to be used in a wide range of scenarios. However, its large-scale production is still hindered by the high cost. Here we report the engineering of Halomonas bluephagenesis as a low-cost platform for non-sterile and continuous fermentative production of P(3HB-co-4HB) from glucose. Two interrelated 4-hydroxybutyrate (4HB) biosynthesis pathways were constructed to guarantee 4HB monomer supply for P(3HB-co-4HB) synthesis by working in concert with 3-hydroxybutyrate (3HB) pathway. Interestingly, only 0.17 mol% 4HB in the copolymer was obtained during shake flask studies. Pathway debugging using structurally related carbon source located the failure as insufficient 4HB accumulation. Further whole genome sequencing and comparative genomic analysis identified multiple orthologs of succinate semialdehyde dehydrogenase (gabD) that may compete with 4HB synthesis flux in H. bluephagenesis. Accordingly, combinatory gene-knockout strains were constructed and characterized, through which the molar fraction of 4HB was increased by 24-fold in shake flask studies. The best-performing strain was grown on glucose as the single carbon source for 60 h under non-sterile conditions in a 7-L bioreactor, reaching 26.3 g/L of dry cell mass containing 60.5% P(3HB-co-17.04 mol%4HB). Besides, 4HB molar fraction in the copolymer can be tuned from 13 mol% to 25 mol% by controlling the residual glucose concentration in the cultures. This is the first study to achieve the production of P(3HB-co-4HB) from only glucose using Halomonas.


Assuntos
Glucose , Halomonas , Hidroxibutiratos/metabolismo , Engenharia Metabólica , Poliésteres/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucose/genética , Glucose/metabolismo , Halomonas/genética , Halomonas/metabolismo , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo
2.
Metab Eng ; 39: 128-140, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889295

RESUMO

To engineer non-model organisms, suitable genetic parts must be available. However, biological parts are often host strain sensitive. It is therefore necessary to develop genetic parts that are functional regardless of host strains. Here we report several novel phage-derived expression systems used for transcriptional control in non-model bacteria. Novel T7-like RNA polymerase-promoter pairs were obtained by mining phage genomes, followed by in vivo characterization in non-model strains Halomonas spp TD01 and Pseudomonas entomophila. Three expression systems, namely, MmP1, VP4, and K1F, were developed displaying orthogonality (crosstalk<0.7%), tight regulation (3085-fold induction), and high efficiency (2.5-fold of Ptac) in Halomonas sp. TD01, a chassis strain with a high industrial value. The expression under the corresponding T7-like promoter libraries persisted with striking correlations (R2 >0.94) between Escherichia coli and Halomonas sp. TD01, implying suitability of broad-host range. Three Halomonas TD strains were then constructed based upon these expression systems that enabled interchangeable and controllable gene expression. One of the strains termed Halomonas TD-MmP1 was used to express the cell-elongation cassette (minCD genes) and polyhydroxybutyrate (PHB) biosynthetic pathway, resulting in a 100-fold increase in cell lengths and high levels of PHB production (up to 92% of cell dry weight), respectively. We envision these T7-like expression systems to benefit metabolic engineering in other non-model organisms.


Assuntos
Bacteriófago T7/genética , Vetores Genéticos/genética , Halomonas/fisiologia , Hidroxibutiratos/metabolismo , Engenharia Metabólica/métodos , Transdução Genética/métodos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Halomonas/metabolismo , Redes e Vias Metabólicas/genética
3.
Nat Commun ; 14(1): 1500, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932109

RESUMO

Context-dependency of mammalian transcriptional elements has hindered the quantitative investigation of multigene expression stoichiometry and its biological functions. Here, we describe a host- and local DNA context-independent transcription system to gradually fine-tune single and multiple gene expression with predictable stoichiometries. The mammalian transcription system is composed of a library of modular and programmable promoters from bacteriophage and its cognate RNA polymerase (RNAP) fused to a capping enzyme. The relative expression of single genes is quantitatively determined by the relative binding affinity of the RNAP to the promoters, while multigene expression stoichiometry is predicted by a simple biochemical model with resource competition. We use these programmable and modular promoters to predictably tune the expression of three components of an influenza A virus-like particle (VLP). Optimized stoichiometry leads to a 2-fold yield of intact VLP complexes. The host-independent orthogonal transcription system provides a platform for dose-dependent control of multiple protein expression which may be applied for advanced vaccine engineering, cell-fate programming and other therapeutic applications.


Assuntos
RNA Polimerases Dirigidas por DNA , Transcrição Gênica , Animais , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas/genética , Mamíferos/genética , Mamíferos/metabolismo
4.
Integr Biol (Camb) ; 10(8): 474-482, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30039143

RESUMO

Synthetic biologists are dedicated to designing genetic systems from the bottom up to understand how living systems work. To date, a variety of genetic circuits exhibiting bistability have been designed, greatly expanding our understanding of the biological multistability in natural systems. However, the study of more complex forms of biological multistability using synthetic methods is still limited. In this report, we describe the engineering of a genetic circuit with regulatable multistability. A novel genetic toggle switch exhibiting inducible bistability and a self-activation circuit were individually designed and characterized, after which they were assembled to create a circuit that presents tristability. In bacteria, this synthetic circuit enables cells to differentiate spontaneously into three different states of gene expression. Moreover, the multistability of the circuit can be modulated by external inputs. This work provides a synthetic biology framework for the study of biological multistability and may help to understand natural multistability phenomena.


Assuntos
Redes Reguladoras de Genes , Engenharia Genética/métodos , Escherichia coli/genética , Citometria de Fluxo , Genes Bacterianos , Instabilidade Genômica , Técnicas Analíticas Microfluídicas , Modelos Genéticos , Processos Estocásticos , Biologia Sintética
5.
ACS Synth Biol ; 6(8): 1445-1452, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28437094

RESUMO

One of the purposes of synthetic biology is to develop rational methods that accelerate the design of genetic circuits, saving time and effort spent on experiments and providing reliably predictable circuit performance. We applied a reverse engineering approach to design an ultrasensitive transcriptional quorum-sensing switch. We want to explore how systems biology can guide synthetic biology in the choice of specific DNA sequences and their regulatory relations to achieve a targeted function. The workflow comprises network enumeration that achieves the target function robustly, experimental restriction of the obtained candidate networks, global parameter optimization via mathematical analysis, selection and engineering of parts based on these calculations, and finally, circuit construction based on the principles of standardization and modularization. The performance of realized quorum-sensing switches was in good qualitative agreement with the computational predictions. This study provides practical principles for the rational design of genetic circuits with targeted functions.


Assuntos
Fenômenos Fisiológicos Bacterianos/genética , Regulação Bacteriana da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Modelos Genéticos , Percepção de Quorum/genética , Simulação por Computador , Biologia Sintética/métodos
6.
Nat Commun ; 8(1): 52, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28674389

RESUMO

Rational engineering of biological systems is often complicated by the complex but unwanted interactions between cellular components at multiple levels. Here we address this issue at the level of prokaryotic transcription by insulating minimal promoters and operators to prevent their interaction and enable the biophysical modeling of synthetic transcription without free parameters. This approach allows genetic circuit design with extraordinary precision and diversity, and consequently simplifies the design-build-test-learn cycle of circuit engineering to a mix-and-match workflow. As a demonstration, combinatorial promoters encoding NOT-gate functions were designed from scratch with mean errors of <1.5-fold and a success rate of >96% using our insulated transcription elements. Furthermore, four-node transcriptional networks with incoherent feed-forward loops that execute stripe-forming functions were obtained without any trial-and-error work. This insulation-based engineering strategy improves the resolution of genetic circuit technology and provides a simple approach for designing genetic circuits for systems and synthetic biology.Unwanted interactions between cellular components can complicate rational engineering of biological systems. Here the authors design insulated minimal promoters and operators that enable biophysical modeling of bacterial transcription without free parameters for precise circuit design.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Elementos Isolantes/genética , Regiões Promotoras Genéticas/genética , Biologia Sintética , Engenharia Genética , Plasmídeos
7.
J Biosci Bioeng ; 123(3): 347-352, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27773604

RESUMO

We engineered Escherichia coli cells to bind to cyanobacteria by heterologously producing and displaying lectins of the target cyanobacteria on their surface. To prove the efficacy of our approach, we tested this design on Microcystis aeruginosa with microvirin (Mvn), the lectin endogenously produced by this cyanobacterium. The coding sequence of Mvn was C-terminally fused to the ice nucleation protein NC (INPNC) gene and expressed in E. coli. Results showed that E. coli cells expressing the INPNC::Mvn fusion protein were able to bind to M. aeruginosa and the average number of E. coli cells bound to each cyanobacterial cell was enhanced 8-fold. Finally, a computational model was developed to simulate the binding reaction and help reconstruct the binding parameters. To our best knowledge, this is the first report on the binding of two organisms in liquid culture mediated by the surface display of lectins and it may serve as a novel approach to mediate microbial adhesion.


Assuntos
Aderência Bacteriana , Bioengenharia , Escherichia coli/citologia , Escherichia coli/metabolismo , Engenharia Genética , Microcystis/citologia , Microcystis/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/metabolismo , Microcystis/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
8.
ACS Synth Biol ; 6(2): 211-216, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27718551

RESUMO

We developed an in vitro DNA detection system using a pair of dCas9 proteins linked to split halves of luciferase. Luminescence was induced upon colocalization of the reporter pair to a ∼44 bp target sequence defined by sgRNAs. We used the system to detect Mycobacterium tuberculosis DNA with high specificity and sensitivity. The reprogrammability of dCas9 was further leveraged in an array design that accesses sequence information across the entire genome.


Assuntos
Sequência de Bases/genética , Endonucleases/genética , Ácidos Nucleicos/genética , Sistemas CRISPR-Cas/genética , DNA Bacteriano/genética , Genoma Bacteriano/genética , Luciferases/genética , Luminescência , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade
9.
ACS Synth Biol ; 5(3): 269-73, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26652307

RESUMO

Mathematical modeling of genetic circuits generally assumes that gene expression is at steady state when measurements are performed. However, conventional methods of measurement do not necessarily guarantee that this assumption is satisfied. In this study, we reveal a bi-plateau mode of gene expression at the single-cell level in bacterial batch cultures. The first plateau is dynamically active, where gene expression is at steady state; the second plateau, however, is dynamically inactive. We further demonstrate that the predictability of assembled genetic circuits in the first plateau (steady state) is much higher than that in the second plateau where conventional measurements are often performed. By taking the nature of steady state into consideration, our method of measurement promises to directly capture the intrinsic property of biological parts/circuits regardless of circuit-host or circuit-environment interactions.


Assuntos
Modelos Teóricos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Expressão Gênica , Redes Reguladoras de Genes , Plasmídeos/genética , Plasmídeos/metabolismo
10.
ACS Synth Biol ; 3(12): 1011-4, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524112

RESUMO

Aromatic pollutants in the environments pose significant threat to human health due to their persistence and toxicity. Here, we report the design and comprehensive characterization of a set of aromatic biosensors constructed using green fluorescence protein as the reporter and aromatics-responsive transcriptional regulators, namely, NahR, XylS, HbpR, and DmpR, as the detectors. The genetic connections between the detectors and the reporter were carefully adjusted to achieve fold inductions far exceeding those reported in previous studies. For each biosensor, the functional characteristics including the dose-responses, dynamic range, and the detection spectrum of aromatic species were thoroughly measured. In particular, the interferences that nontypical inducers exert on each biosensor's response to its strongest inducer were evaluated. These well-characterized biosensors might serve as potent tools for environmental monitoring as well as quantitative gene regulation.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental/métodos , Hidrocarbonetos Aromáticos/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA