Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Biol ; 16(4)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38587834

RESUMO

Glutamate dehydrogenase 1 (GLUD1) is implicated in oncogenesis. However, little is known about the relationship between GLUD1 and hepatocellular carcinoma (HCC). In the present study, we demonstrated that the expression levels of GLUD1 significantly decreased in tumors, which was relevant to the poor prognosis of HCC. Functionally, GLUD1 silencing enhanced the growth and migration of HCC cells. Mechanistically, the upregulation of interleukin-32 through AKT activation contributes to GLUD1 silencing-facilitated hepatocarcinogenesis. The interaction between GLUD1 and AKT, as well as α-ketoglutarate regulated by GLUD1, can suppress AKT activation. In addition, LIM and SH3 protein 1 (LASP1) interacts with GLUD1 and induces GLUD1 degradation via the ubiquitin-proteasome pathway, which relies on the E3 ubiquitin ligase synoviolin (SYVN1), whose interaction with GLUD1 is enhanced by LASP1. In hepatitis B virus (HBV)-related HCC, the HBV X protein (HBX) can suppress GLUD1 with the participation of LASP1 and SYVN1. Collectively, our data suggest that GLUD1 silencing is significantly associated with HCC development, and LASP1 and SYVN1 mediate the inhibition of GLUD1 in HCC, especially in HBV-related tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Proteínas do Citoesqueleto , Glutamato Desidrogenase , Proteínas com Domínio LIM , Neoplasias Hepáticas , Proteínas Virais Reguladoras e Acessórias , Humanos , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Proteínas Virais Reguladoras e Acessórias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Animais , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proliferação de Células , Masculino , Camundongos , Transativadores
2.
Cell Oncol (Dordr) ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845585

RESUMO

PURPOSE: As a vital component of the hepatitis B virus (HBV) nucleocapsid, HBV core protein (HBC) contributes to hepatocarcinogenesis. Here, we aimed to assess the effects of RANGAP1 and KDM2A on tumorigenesis induced by HBC. METHODS: Co-immunoprecipitation (Co-IP) combined with mass spectrometry were utilized to identify the proteins with the capacity to interact with HBC. The gene and protein levels of RANGAP1 and KDM2A in hepatocellular carcinoma (HCC) and HBV-positive HCC tissues were evaluated using different cohorts. The roles of RANGAP1 and KDM2A in HCC cells mediated by HBC were investigated in vitro and in vivo. Co-IP and western blot were used to estimate the interaction of HBC with RANGAP1 and KDM2A and assess RANGAP1 stabilization regulated by HBC. RESULTS: We discovered that HBC could interact with RANGAP1 and KDM2A, the levels of which were markedly elevated in HCC tissues. Relying on RANGAP1 and KDM2A, HBC facilitated HCC cell growth and migration. The increased stabilization of RANGAP1 mediated by HBC was relevant to the disruption of the interaction between RANGAP1 and an E3 ligase SYVN1. RANGAP1 interacted with KDM2A, and it further promoted KDM2A stabilization by disturbing the interaction between KDM2A and SYVN1. HBC enhanced the interaction of KDM2A with RANGAP1 and upregulated the expression of KDM2A via RANGAP1 in HCC cells. CONCLUSIONS: These findings demonstrate a novel mechanism by which HBC facilitates hepatocarcinogenesis. RANGAP1 and KDM2A could act as potential molecular targets for treating HBV-associated malignancy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA