Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 17: 1345536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440220

RESUMO

Polystyrene nanoplastics are a novel class of pollutants. They are easily absorbed by living organisms, and their potential toxicity has raised concerns. However, the impact of polystyrene nanoplastics on auditory organs remains unknown. Here, our results showed that polystyrene nanoplastics entered the cochlea of mice, HEI-OC1 cells, and lateral line hair cells of zebrafish, causing cellular injury and increasing apoptosis. Additionally, we found that exposure to polystyrene nanoplastics resulted in a significant elevation in the auditory brainstem response thresholds, a loss of auditory sensory hair cells, stereocilia degeneration and a decrease in expression of Claudin-5 and Occludin proteins at the blood-lymphatic barrier in mice. We also observed a significant decrease in the acoustic alarm response of zebrafish after exposure to polystyrene nanoplastics. Mechanistic analysis revealed that polystyrene nanoplastics induced up-regulation of the Nrf2/HO-1 pathway, increased levels of malondialdehyde, and decreased superoxide dismutase and catalase levels in cochlea and HEI-OC1 cells. Furthermore, we observed that the expression of ferroptosis-related indicators GPX4 and SLC7A11 decreased as well as increased expression of ACLS4 in cochlea and HEI-OC1 cells. This study also revealed that polystyrene nanoplastics exposure led to increased expression of the inflammatory factors TNF-α, IL-1ß and COX2 in cochlea and HEI-OC1 cells. Further research found that the cell apoptosis, ferroptosis and inflammatory reactions induced by polystyrene nanoplastics in HEI-OC1 cells was reversed through the pretreatment with N-acetylcysteine, a reactive oxygen species inhibitor. Overall, our study first discovered and systematically revealed the ototoxicity of polystyrene nanoplastics and its underlying mechanism.

2.
Biosens Bioelectron ; 237: 115519, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437455

RESUMO

Self-assembled functional nanomaterials with electromagnetic hot spots are crucial and highly desirable in surface-enhanced Raman scattering (SERS). Due to its versatile biological scaffold, the M13 phage has been employed to produce novel nano-building blocks and devices. In this study, we propose a novel M13 phage-based SERS nanocarrier, that utilizes the pVIII capsid in M13 to conjugate Au@Ag core-shell nanorod (Au@AgNR) with linker carboxy-PEG-thiol (M13-Au@AgNR) and the pIII capsid to specifically target Escherichia coli (E. coli). The M13-Au@AgNR@DTTC (3,3'- diethylthiocarbocyanine iodide) SERS probe was used to detect E. coli in a concentration range of 6 to 6 × 105 cfu/mL, achieving a limit of detection (LOD) of 0.5 cfu/mL. The proposed SERS platform was also tested in real samples, showing good recoveries (92%-114.3%) and a relative standard deviation (RSD) of 1.2%-4.7%. Furthermore, the system demonstrated high antibacterial efficiency against E. coli, approximately 90%, as measured by the standard plate-count method. The investigation provides an effective strategy for in vitro bacteria detection and inactivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA