RESUMO
Aggressive collective action online has many negative impacts on the online environment and can even lead to political violence or social panic in the offline world. Although the effect of relative deprivation on aggression toward the compared object is well known, the influence of relative deprivation on aggressive collective action online toward deprivation-related provocateurs within the group has been ignored. Thus, this study attempted to explore the effect, as well as the mediating mechanism underlying it. We found that group relative deprivation manipulated by an employment problem scenario (with the triggering event as a covariable) can enhance aggressive collective action online toward deprivation-related provocateurs within the group, with hostile feelings mediating the effect. These results support and develop the relative deprivation theory, frustration-aggression theory, stress and coping theory, and deepen the understanding of the relationship between relative deprivation and aggression. The findings also suggest that colleges should focus more on graduate employment problems and decreasing the relative deprivation experienced by undergraduate students in efforts to prevent aggressive collective action online.
RESUMO
The Wanshan mercury (Hg) mine in Guizhou Province is one of the main Hg-producing mines in China, resulting in serious Hg pollution in soil and wastewater. Therefore, the present study is mainly aimed to investigate the current degree of heavy metal pollution and compared the microbial diversity in the Wanshan Hg mine and its surrounding environment. The results showed the distribution of the pollution load index values was low in the west and high in the east. The northwestern (Aozhai River), northern (Meizi Stream), and southwestern parts of the study area and the area surrounding Erkeng did not reach moderate pollution. Mercury accounted for the majority of the potential ecological risk index values, reaching 67.62%, while the proportions of Cd and As were 15.75% and 10.75%, respectively. Mercury was found mainly in a residual state, which had an average proportion of 71.09%. In the three regions, Proteobacteria and Actinobacteria had the highest relative abundances. According to linear discriminant analysis effect size, the indicator species in the Hg mining area, woodland and cultivated land was f__67-14 (belonging to a family of Solirubrobacterales), Reyranellales and Reyranellaceae, Intrasporangiaceae, respectively. In summary, this study for the very first time estimated that the higher Hg, Cd and As pollution existed in Wanshan Hg mine since their concentration in the all soil samples totally exceeded the standard value (GB15618-2018), while Cd and As pollution in soil was commonly ignored by the previous study. The cultivated land had higher community richness than the mercury mining district and woodland. Our results suggested that the relevant local departments need to take more active measures to solve the problem of high levels of Hg, Cd, and As in the local soil, and prevent their adverse effects on humans.
Assuntos
Mercúrio , Metais Pesados , Microbiota , Poluentes do Solo , China , Monitoramento Ambiental , Humanos , Mercúrio/análise , Metais Pesados/análise , Solo , Poluentes do Solo/análiseRESUMO
The speciation and activity of heavy metals in farmland were changed with the different soil properties and flooded environment, especially in the complex and rainy environment in soil of Guizhou Province. The objective of this study was to explore the concentrations of a variety of heavy metal activity and the speciation of those heavy metals in rhizosphere soil at different growth stages of Brassica campestris L. in a Karst mountainous area. Tessier's five-stage sequential extraction procedure, the potential ecological risk index, a Bayesian network, accumulation factors, translocation factors and a laboratory simulation experiment were applied in this study. The results showed that (1) no heavy metal concentrations (except the Cd concentration) exceeded the limits of the soil environmental quality risk control standards for soil contamination of agricultural land in China (GB15618-2018). (2) The orders of the accumulation factor and translocation factor values were Zn > Cd > Cu > Pb > Cr and Cd > Cu > Zn > Pb > Cr, respectively. The order of the heavy metal contents of different tissues during the whole growth period was roots > leaves > stems. (3) The indoor simulation test exhibited that the dry-wet alternation and flooding can reduce Cd activity in soil. (4) Redox potential (Eh), rather than pH or organic matter, was the main factor impacting the total content and chemical speciation of heavy metals in the soil, based on a dynamic Bayesian network. Based on the results, we suggest that the activity of heavy metals should be improved by using dry-wet alternation, whereas the proportions of ion-exchangeable forms of heavy metals are relatively low in the study area (except for Cd). Several measures may be taken to enhance soil acidity and reduce the Cd activity during Brassica campestris L. cultivation.
Assuntos
Brassica/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Agricultura , Teorema de Bayes , China , Monitoramento Ambiental , Poluição Ambiental/análise , Fazendas , Metais Pesados/análise , Rizosfera , Medição de Risco , Solo/química , Poluentes do Solo/análiseRESUMO
The prevalence of obesity and diabetes, and their complicating mental disorders, severely affect public health. This study aimed to investigate the long-term effects of an Akkermansia muciniphila subtype (A. muciniphilasub) on high-fat diet-induced obesity and diabetes, and to evaluate whether this subtype can alleviate their complicated mental disorders. Whole genome sequencing and short chain fatty acid production analysis in supernatant of pure culture were performed. Female adult C57BL/6 mice were fed a high-fat diet or a normal chow diet and were gavaged with A. muciniphilasub or phosphate-buffered saline daily for 10 months. Body weight, food consumption and blood glucose were measured. At the end of the treatment period, all mice were subjected to the Y-maze test, sucrose preference test, analyses of serum, fecal microbiota analysis and histological examination. This A. muciniphilasub had 278 unique genes compared to the type strain (A. muciniphila ATCC BAA-835) and produced short chain fatty acids both. A. muciniphilasub administration significantly reduced body weight gain and improved the spatial memory of high-fat diet-fed mice. A. muciniphilasub increased Nissl bodies in neurons of the hippocampus, and restored the high-fat diet-inhibited tryptophan metabolism. The high-fat diet led to decreased serum 5-hydroxytryptamine and induced depression, which were not alleviated by A. muciniphilasub. A. muciniphilasub increased the relative fecal abundance of Bifidobacterium, and was negatively correlated with the fecal abundance of Bacteroides. The present study demonstrated the beneficial effects of this A. muciniphilasub on body weight, blood glucose control and the alleviation of the memory decay caused by a high-fat diet in mice.
Assuntos
Dieta Hiperlipídica , Infecções por Bactérias Gram-Negativas/complicações , Infecções por Bactérias Gram-Negativas/microbiologia , Doenças Metabólicas/etiologia , Doenças Neurodegenerativas/etiologia , Verrucomicrobia/fisiologia , Akkermansia , Animais , Glicemia , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Genoma Bacteriano , Genômica/métodos , Glucose/metabolismo , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Camundongos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Propionatos/metabolismo , Células Piramidais/metabolismo , Verrucomicrobia/classificaçãoRESUMO
BACKGROUND: Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health, however, little is known about its genomic content. RESULTS: Herein, we for the first time characterized the genomic architecture of A. muciniphila based on whole-genome sequencing, assembling, and annotating of 39 isolates derived from human and mouse feces. We revealed a flexible open pangenome of A. muciniphila currently consisting of 5644 unique proteins. Phylogenetic analysis identified three species-level A. muciniphila phylogroups exhibiting distinct metabolic and functional features. Based on the comprehensive genome catalogue, we reconstructed 106 newly A. muciniphila metagenome assembled genomes (MAGs) from available metagenomic datasets of human, mouse and pig gut microbiomes, revealing a transcontinental distribution of A. muciniphila phylogroups across mammalian gut microbiotas. Accurate quantitative analysis of A. muciniphila phylogroups in human subjects further demonstrated its strong correlation with body mass index and anti-diabetic drug usage. Furthermore, we found that, during their mammalian gut evolution history, A. muciniphila acquired extra genes, especially antibiotic resistance genes, from symbiotic microbes via recent lateral gene transfer. CONCLUSIONS: The genome repertoire of A. muciniphila provided insights into population structure, evolutionary and functional specificity of this significant bacterium.
Assuntos
Microbioma Gastrointestinal/genética , Mamíferos/microbiologia , Verrucomicrobia/genética , Verrucomicrobia/fisiologia , Sequenciamento Completo do Genoma , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Evolução Molecular , Humanos , Camundongos , Anotação de Sequência Molecular , Verrucomicrobia/efeitos dos fármacosRESUMO
Soil and Uncaria rhynchophylla in different functional areas were selected for the study,the content of heavy metals such as As, Cd, Cu, Cr, Pb, and Hg in soil and U. rhynchophylla was discussed, the characteristics of their accumulation in the U.rhynchophylla was analyzed, the contamination levels of heavy metals in soil in different functional areas was evaluated. The results showed that content of Cu, As, Pb and Cr in soil was being cropland>woodland>wasteland, content of Cd was being woodland>cropland>wasteland, content of Hg was being cropland>woodland>wasteland. According to quality standard of soil environment, soil Cd in woodland, cropland and wasteland all exceeded the state-level standards, soil Cd in woodland exceeded the secondary standard, soil Hg in cropland and wasteland all exceeded the state-level standards. According to technical conditions of green food producing area, soil Cd in woodland exceeded the limit value of standard. According to Green Trade Standards of Importing Exporting Medicinal Plants Preparations,the content of heavy metals of U.rhynchophylla in cropland,woodland and wasteland were correspond to the specification. From the single factor pollution index, the soil in woodland was polluted by Cd. From the comprehensive pollution index, the soils in different functional areas were not contaminated by heavy metals. The enrichment coefficient of heavy metals such as As, Cu, Cr, and Pb in hook of U.rhynchophylla was being wasteland>woodland>cropland, the enrichment coefficient of Cu in hook of U. rhynchophylla in wasteland was more than 1. Except Cu, the enrichment coefficient of other heavy metals was low.
Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Uncaria/crescimento & desenvolvimento , Cádmio/análise , Mercúrio/análise , Solo/químicaRESUMO
As an emerging environmental pollutant, microplastics (MPs) have received widespread attention. Recently, studies examining microplastic pollution in plateau lakes have been increasing, but few have examined the distributions, sources, and fates of MPs in different plateau areas. In this work, the abundances and characteristics of MPs in surface waters and sediments in lakes of the Qinghai-Tibet Plateau (QTP) and Yunnan-Guizhou Plateau (YGP) were systematically investigated. The abundances of MPs in the lakes of the QTP ranges within 0.05-1.8 n/L in surface waters and 10-2643.7 n/kg in sediments. In the lakes of the YGP, the abundances of MPs ranged within 1.3-10.1 n/L in surface waters and 171.7-4260 n/kg in sediments. The dominant shape, color, and size class of MPs were fiber, transparent, and 0-0.5 mm in plateau lakes, respectively. MPs were mainly composed of polypropylene, polyethylene, and polyethylene terephthalate polymers. The different sources of MPs in the QTP and YGP lakes were mainly due to differences in human activities. The primary sources of microplastic pollution in the lakes of the QTP were tourism and atmospheric transport, while sewage discharge, agriculture, and fishing activities were the main sources of MPs in urban lakes of the YGP. Although the level of microplastic pollution in plateau lakes was relatively low, the sources should be identified and monitored so that the effects and extent of microplastic pollution in these fragile environments can be fully understood. This study provides a valuable dataset and theoretical basis for subsequent research on microplastic pollution in plateau lakes.
RESUMO
The alteration of stand age instigates modifications in soil properties and microbial communities. Understanding the impacts of stand age on soil enzyme stoichiometry and microbial nutrient limitations in Camellia oleifera plantation is crucial for nutrient management. Taking C. oleifera plantation across four age groups (<10 a, 15-25 a, 30-50 a, >60 a) in a subtropical red soil region as test objects, we examined the response of soil enzyme stoichiometry and microbial nutrient limitations to change in stand age and analyzed the pathways for such responses. The results showed that, compared to that of stand age <10 a, enzyme C:N in the 15-25 a was increased and enzyme N:P was significantly reduced. Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) exhibited a trend of initially decreasing and then increasing with stand age. MBN and MBN:MBP were significantly higher in the <10 a compared to that in the 30-50 a. MBC:MBN was significantly higher in the 30-50 a and >60 a compared to the <10 a and 15-25 a. Results of redundancy analysis revealed that soil nutrients, microbial biomass and their stoichiometry explained 92.4% of the variations in enzyme stoichiometry. Partial least squares path modeling (PLS-PM) results demonstrated that soil organic carbon (SOC) had a positive effect on microbial C limitation; MBN, MBN:MBP, MBC:MBP, SOC, and total nitrogen had a nega-tive overall effect on microbial P limitation, whereas soil C:N had a positive overall effect on microbial P limitation. There was a significant positive correlation between microbial C and P limitations. With increasing stand age, microbial nutrient limitation shifted from N and P limitation (<10 a) to C and P limitation (15-25 a, 30-50 a, >60 a).
Assuntos
Camellia , Carbono , Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Camellia/metabolismo , Camellia/crescimento & desenvolvimento , Camellia/química , Solo/química , Nitrogênio/metabolismo , Nitrogênio/análise , Carbono/metabolismo , Fósforo/metabolismo , Nutrientes/metabolismo , Nutrientes/análise , Fatores de Tempo , China , BiomassaRESUMO
Introduction: Acinetobacter baumannii (AB) is rising as a human pathogen of critical priority worldwide as it is the leading cause of opportunistic infections in healthcare settings and carbapenem-resistant AB is listed as a "super bacterium" or "priority pathogen for drug resistance" by the World Health Organization. Methods: Clinical isolates of A. baumannii were collected and tested for antimicrobial susceptibility. Among them, carbapenem-resistant and carbapenem-sensitive A. baumannii were subjected to prokaryotic transcriptome sequencing. The change of sRNA and mRNA expression was analyzed by bioinformatics and validated by quantitative reverse transcription-PCR. Results: A total of 687 clinical isolates were collected, of which 336 strains of A. baumannii were resistant to carbapenem. Five hundred and six differentially expressed genes and nineteen differentially expressed sRNA candidates were discovered through transcriptomic profile analysis between carbapenem-resistant isolates and carbapenem-sensitive isolates. Possible binding sites were predicted through software for sRNA21 and adeK, sRNA27 and pgaC, sRNA29 and adeB, sRNA36 and katG, indicating a possible targeting relationship. A negative correlation was shown between sRNA21 and adeK (r = -0.581, P = 0.007), sRNA27 and pgaC (r = -0.612, P = 0.004), sRNA29 and adeB (r = -0.516, P = 0.020). Discussion: This study preliminarily screened differentially expressed mRNA and sRNA in carbapenem-resistant A. baumannii, and explored possible targeting relationships, which will help further reveal the resistance mechanism and provide a theoretical basis for the development of drugs targeting sRNA for the prevention and treatment of carbapenem-resistant A. baumannii infection.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Carbapenêmicos , Perfilação da Expressão Gênica , RNA Mensageiro , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Carbapenêmicos/farmacologia , Humanos , Infecções por Acinetobacter/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Biologia Computacional/métodos , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transcriptoma , Genoma Bacteriano/genéticaRESUMO
Soil microplastics (MPs) pollution is a global concern, but the distribution of MPs and the factors affecting the distribution of MPs in different ecologically fragile karst areas remain poorly understood. Here, we investigated the spatial distribution, characteristics, and composition of MPs in different ecologically fragile karst areas of Guizhou Province and explored the relationship between ecosystem fragility and MPs. Structural equation models combined with robust random forest (RF) models were used to clarify the effects of karst soil properties on MPs and quantify their relative contributions. The abundance of soil MPs in ecologically fragile karst areas was 2949 item kg-1, and the risk of MPs contamination was highest in medium-fragile areas. The robust RF models precisely predicted the abundance of soil MPs in different fragile areas, and the mean root mean square error and R2 were 0.21 and 0.93, respectively. The contribution of karst soil properties to the abundance of MPs was estimated. Some soil chemical properties had a significant effect (p < 0.05) on MPs pollution in ecologically fragile karst areas. The results of our study suggest that the fragile ecological environment may exacerbate MPs pollution. Our study also contributes to establish a scientific theoretical foundation for the utilization of plastics and the prevention and control of microplastics pollution in karst ecosystems.
RESUMO
This study investigated the relationship between the characteristics of quality components and trace elements of Niaowang tea from Guizhou Province in mountainous plateau areas. The contents of catechin monomers and eight other trace elements were measured using high-performance liquid chromatography (HPLC) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results showed that the tender summer leaves of Niaowang tea in Guizhou Province had the highest content of catechins at 3558.15~2226.52 µg·g-1. The content of ester catechins was the highest in summer, amounting to 69.75~72.42% of the total catechins. The content of non-ester catechins was the highest in autumn, reaching 52.54~62.28% of the total catechins; among ester catechins, the mass fraction of epigallocatechin gallate (EGCG) showed a pattern of mature summer leaves > tender summer leaves > mature autumn leaves > tender autumn leaves, and the mass fractions of gallocatechin gallate (GCG) and epicatechin gallate (ECG) were larger in autumn than in summer; gallocatechin (GC) had no significant correlation with different trace elements, and Mn had no significant correlations with different catechin monomers. EGCG was significantly negatively correlated with As, Se, Hg, Pb, Ni, and Zn. Additionally, gallic acid (GA) was significantly negatively correlated with As, Hg and Ni. Other catechin monomers were largely significantly positively correlated with trace elements. The biochemical indicators of the phenotype of Niaowang tea show that the summer and autumn buds are suited for making high-quality green tea.
RESUMO
Although straw returning to the field (SRTTF) is conducive to promoting sustainable agricultural production and protecting the environment, straw resources are still wasted due to the lack of suitable straw-returning technology in southern China. Based on the statistical yearbook and a large number of studies, different methods were used to calculate the total straw resources and SRTTF potential, and differences in these methods were compared. The results indicate that the total amount of straw resources in southern China in 2021 was 3.35×108 t. The nutrient content of K2O in the straw accounted for the highest proportion of total nutrient resources (63.66%), followed by N (26.88%) and P2O5 (9.46%). In theory, total SRTTF could replace almost all K2O and part of N and P2O5, indicating that the nutrient substitution potential of SRTTF was high. It is suggested that the SRTTF method be adopted in the middle and lower reaches of the Yangtze River, which mainly uses direct returning (DR) supplemented by indirect returning (IDR). In southeast China, straw returning is carried out by the combination of IDR and IR. In southwest China, straw returning is mainly carried out by IR and supplemented by MDR. This study will provide theoretical support for the government to formulate straw-returning policy.
RESUMO
An increasing number of researchers have focused on microplastics (MPs) pollution in inland freshwater lakes due to its ecotoxicity, while little is known about the effects of hydrological periods on MPs distribution. Therefore, this study aims to investigate MPs distribution, morphological characteristics and physicochemical indices in various environments in dry and wet periods in Caohai Lake. The results exhibited that cultivated soil, water, and sediment in Caohai Lake have been polluted by MPs in dry and wet periods. There were pellets, fragments, film, and fibers of MPs in both dry and wet periods, and MP foam was additionally found in the wet period. MPs with 0 to 0.5 mm possessed the largest proportion in the five environments in dry and wet periods, followed by MPs with 0.5 to 1 mm and 1 to 5 mm. In Caohai Lake, the black, white, green, red, and transparent MPs in dry period, and black, colourful, grey, red and transparent MPs in wet period were found. The developed structural equation model confirmed that MPs in sediment were probably mainly from soil. There are negative effects of the relative abundance of MPs from cultivated soil to lake water in the dry period, whereas the opposite is true in the wet period. Interestingly, the complex and fast water velocity in the estuary in the wet period led to a lower relative abundance of MPs in its sediment in comparison with the dry period. The distribution model of MPs in estuary and lake water in dry and wet periods is not inconsistent. Our results suggest that the related government department should take measures to reduce the MPs pollution in Caohai Lake, especially from the source.
RESUMO
Microplastics (<5 mm) (MPs) are widely distributed throughout the world, and their accumulation and migration in the environment have caused health and safety concerns. Currently, most of the reviewed literatures mainly focus on the distribution in various environmental media, adsorption mechanisms with different pollutants, and characterization of MPs. Therefore, the present review mainly highlights the characterization techniques of MPs and the underlying mechanisms of their combination with conventional coexisting substances (heavy metals, organic pollutants, and nutrients). We observed that massive MP pollution has been found in many areas, especially in Africa, Asia, India, South Africa, North America and Europe. The separation methods of MPs in different environmental media are basically similar, including sampling, pre-treatment, flotation, filtration and digestion. The combination of multiple characterization technologies can more precisely identify the shape, abundance, colour, and particle size of MPs. Notably, although recent reports have confirmed that MPs can act as carriers of heavy metals and carry them into organisms to cause harm, MPs have different adsorption and desorption characteristics for various heavy metals. The adsorption capacity of organic pollutants onto MPs is closely related to their hydrophobicity, specific surface area and functional group characteristics. The relative abundance of MPs in sediments and lakes had a significantly positive correlation with the mass concentration of total nitrogen in lake water, but this finding still needs to be further verified. Based on current research, we suggest that future MP research should focus on characterization technology, environmental migration, ecological effects, health risks and degradation methods.
Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , África do SulRESUMO
Background: Current studies indicate a contradictory relationship between decreased mortality risks of spontaneous intracerebral hemorrhage (sICH) and elevated low-density lipoprotein cholesterol (LDL-C) levels. Thus, this meta-analysis was designed to examine the involvement of high LDL-C levels in a lower mortality risk of sICH patients. Methods: PubMed, Cochrane, and Embase databases were searched up to the date of August 3rd, 2022. Pooled odds ratio (OR) with a 95% confidence interval (CI) was estimated for the higher vs. lower serum LDL-C level groups. Subgroup and sensitivity analyses were also carried out. Egger's test was applied to detect any potential publication bias. Results: Of 629 citations reviewed, 8 eligible cohort studies involving 83,013 patients were enrolled in this meta-analysis. Compared with lower serum LDL-C levels containing patients, higher serum LDL-C patients exhibited significantly decreased risks of 3-month mortality (OR: 0.51; 95%CI: 0.33-0.78; I2 = 47.8%); however, the LDL-C level change wasn't significantly associated with in-hospital mortality risks (OR: 0.92; 95%CI: 0.63-1.33; I2 = 91.4%) among sICH subjects. All studies included were classified as high-quality investigations. Conclusions: This meta-analysis suggests a higher LDL-C level may decrease the mortality risk in sICH patients. LDL-C level increase is inversely associated with the 3-month mortality risks in these patients but not significantly correlated with the in-hospital mortality risks. Further well-designed prospective studies with extended follow-up periods are needed to confirm these findings and explore underlying cross-talks. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022318318, identifier: PROSPERO 2022 CRD42022318318.
RESUMO
Heavy metals in soil are in a high background state in Karst areas, and agricultural activities will affect the bioactivity of heavy metals. The heavy metal (Cd and Cr) bioactivity and their activation effects in rice-rape rotation lands in Karst areas were studied based on field experiments and laboratory analysis, and the influencing factors of heavy metal activity were analyzed based on the physical and chemical properties of soil. The results suggest that the residual fraction was the largest and the exchangeable fraction was the smallest for both Cr and Cd in rice-rape rotation lands in Karst areas. During the rice-rape rotation process, Cd and Cr tended to be released from the residual fraction and transformed into the other four fractions. The fractions with high bioactivity, including the exchangeable fraction and carbonate fraction, increased to different degrees. Rice-rape rotation could activate the activity of soil Cd and Cr in Karst areas. It is also revealed that the activity of soil Cd and Cr in Karst areas was closely associated with soil pH and electric potential (Eh). In the 0-20 cm soil layer, Cr showed a significant negative correlation with pH (r = -0.69, p < 0.05), while both Cr and Cd showed significant negative correlations with Eh, and the correlation coefficients were -0.85 (p < 0.01) and -0.83 (p < 0.01), respectively. In the 20-40 cm soil layer, Cr showed significant negative correlations with Eh, and the correlation coefficient was -0.95 (p < 0.01). No significant correlation between the activity of soil Cd and Cr and soil mechanical composition was observed. This study revealed that special attention should be paid to changes in pH and Eh in consideration of heavy metal activity in the rice-rape rotation process.
Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/análise , China , Monitoramento Ambiental , Metais Pesados/análise , Rotação , Solo , Poluentes do Solo/análiseRESUMO
The Wanshan mercury mine, which is an abandoned mine located in northeastern Guizhou Province in Southwest China, has introduced serious Hg pollution to the local ecosystem resulting from previous mining and smelting activities. However, it is not clear to date whether soil pollution has actually improved after treatment by related departments. Therefore, the present study investigates the vegetation community and heavy metal contents of the soil and plants in the Wanshan mercury mining area. The results showed that most of Hg, Cd, As, Cu, and Zn contents in soil samples were higher than those of Soil Environment Quality Risk Control Standard for Soil Contamination of Agricultural Land in China (GB15618-2018). The observed plant species mainly consisted of Compositae, followed by Leguminosae. Unfortunately, this investigation found that heavy metal concentrations in these plants were not extremely high and far below the standard of hyperaccumulator. Despite all this, the maximum values of bioaccumulation factor for Pb, Cd, Hg, As, Cu and Zn were Serissa japonica (Thunb.) Thunb., Rhus chinensis Mill., Potentilla sibbaldii Haller f., Erigeron canadensis L., Clerodendrum bungei var. bungei. and Rhus chinensis Mill., respectively. Regardless of the carcinogenic or noncarcinogenic risk index, the potential risk to urban children is higher. Our results suggest that heavy metal pollution was indeed relieved since their contents in soil significantly decreased in comparison with those reported in other previous studies. This finding provides a reference for the long-term treatment of heavy metal pollution in the local environment and other areas employing analogous environmental protection measures.
Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Criança , China , Ecossistema , Monitoramento Ambiental , Humanos , Mercúrio/análise , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análiseRESUMO
BACKGROUND: Aedes (Stegomyia) albopictus (Skuse, 1894) is the main vector of dengue virus in China. The resistance to insecticides is a huge obstacle for the control of this species, and determining its resistance status and mechanisms in China is essential for the implementation of vector management strategies. METHODS: We have investigated the larval and adult resistance status of Ae. albopictus to deltamethrin in eight field populations in China. Mutations at the voltage-gated sodium channel gene, related to the knockdown resistance (kdr) effect, were detected by sequencing of PCR products. The eight field populations were examined for pyrethroid resistance using the World Health Organization standard bioassays, and the association between the mutations and phenotypic resistance was tested. RESULTS: The eight field populations of larvae of Ae. albopictus in China exhibited high resistance to deltamethrin; the RR50 values ranged from 12 (ZJ) to 44 (GZ). Adult bioassay revealed that Ae. albopictus populations were resistant to deltamethrin (mortality rate < 90%), except ZJ population (probably resistant, mortality rate = 93.5%). Long knockdown time in the field populations was consistent with low mortality rates in adult bioassay. F1534S mutation showed increased protection against deltamethrin in all populations except BJ and SJZ populations, whereas I1532T mutation showed increased protection against deltamethrin in only BJ population. CONCLUSION: There were different degrees of resistance to deltamethrin in field Ae. albopictus populations in China. The longest knockdown time and lowest mortality rate observed in Ae. albopictus population in Guangzhou indicate the severity of high resistance to deltamethrin. The patchy distribution of deltamethrin resistance and kdr mutations in Ae. albopictus mosquitoes suggests the necessity for resistance management and developing counter measures to mitigate the spread of resistance.
Assuntos
Aedes/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , China , Proteínas de Insetos/genética , Larva/efeitos dos fármacos , MutaçãoRESUMO
Due to the impacts of unwise industrial agriculture, extreme precipitation events are increasing in frequency and are accelerating the process of global warming in the karst area. The dynamic change in soil organic carbon (SOC) and its driving factors in cultivated land in the last 35 years were studied by using data from the second national soil survey of China and measurements made in 2015. The results indicated that the SOC per unit area of cultivated land increased by 32.45 × 103 t in the last 35 years in the study area, exhibiting basically the same levels and a slight increasing trend, and the annual average change rate was 0.02 kg C·hm-2·a-1. In terms of spatial distribution, carbon loss areas were mainly concentrated in the middle northern region, western region, and scattered eastern regions of the county. The main factors affecting the change in SOC in the cultivated land in the study area in the last 35 years include nitrogen fertilizer application, stubble, soil thickness, soil total nitrogen, C/N, rock coverage, gravel content, soil organic carbon density (SOCD1980), etc. This study will provide a database for the management of SOC in cultivated land in the future.
Assuntos
Agricultura , Carbono/análise , Solo , China , Nitrogênio/análiseRESUMO
Paddy rice, one of the most important food crops in Southeast Asia, is considered a main source of human exposure to heavy metal contamination because it efficiently accumulates heavy metals. In the present study, of Japonica rice grains, straw, roots, leaves, and husks and rhizosphere paddy soils (0-20 cm and 20-40 cm depth) were collected from Zunyi in northern Guizhou Province, China. The forms of heavy metals, including Cr, Cd, Pb, Cu, and Zn, in the two soil profiles were investigated using Tessier's five-stage sequential extraction procedure. There was no heavy metal pollution in the study area based on the evaluation of the geo-accumulation index and the potential ecological risk index. Accumulation varied from one area to another, and the highest metal accumulation was found in the order of root > stems > leaves. The bioaccumulation factor (BCF) results revealed that during the grain-filling stage, the rice had high BCF values (> 1) for Cd and Zn. The target hazard quotient (THQ) of ingestion peaked for Cd and reached its minimum level for Zn in not only in adults but also in children. The THQ was ranked as Cd > Cu > Pb > Cr > Zn for both adults and children. The hazard index values for adults and children for the five heavy metals were 1.81 × 10-3 and 1.55 × 10-3, respectively, indicating that these metals have little effect on the human body. The lifetime carcinogenic risk values for local adults and children were 4.28 × 10-5 and 5.92 × 10-5, respectively, both of which were within the tolerable to acceptable risk range. In summary, obvious hazards for local adults and children were not observed in this study. Considering the total amount and chemical forms of Cd, it is necessary to notify the appropriate departments about the possible rice contamination caused by Cd in the soil.