RESUMO
We demonstrate triggered single photon emission up to 77K from an ordered 5x8 array of InGaAs single quantum dots (SQDs). The SQDs are grown selectively on patterned mesa tops utilizing substrate-encoded size-reducing epitaxy (SESRE). It exploits designed surface-curvature stress gradients to preferentially direct atom migration from mesa sidewalls to the top during growth. The emission from the SQDs exhibits a g(2)(0) of 0.19 ± 0.03 at 8K and decent emission spectral uniformity (standard deviation <1% of emission wavelength). The SESRE QDs are inherently compatible with on-chip integrated light manipulation elements, thereby enabling a path towards integrated nanophotonic systems for quantum information processing.
RESUMO
We demonstrate nearly a microsecond of spin coherence in Er3+ ions doped in cerium dioxide nanocrystal hosts, despite a large gyromagnetic ratio and nanometric proximity of the spin defect to the nanocrystal surface. The long spin coherence is enabled by reducing the dopant density below the instantaneous diffusion limit in a nuclear spin-free host material, reaching the limit of a single erbium spin defect per nanocrystal. We observe a large Orbach energy in a highly symmetric cubic site, further protecting the coherence in a qubit that would otherwise rapidly decohere. Spatially correlated electron spectroscopy measurements reveal the presence of Ce3+ at the nanocrystal surface, which likely acts as extraneous paramagnetic spin noise. Even with these factors, defect-embedded nanocrystal hosts show tremendous promise for quantum sensing and quantum communication applications, with multiple avenues, including core-shell fabrication, redox tuning of oxygen vacancies, and organic surfactant modification, available to further enhance their spin coherence and functionality in the future.
RESUMO
Bus-bridging evacuation services can significantly enhance metro resilience during operational disruptions. A resilience-based optimization model was proposed to generate a bus bridging and dispatching plan. The objective of the model is to maximize the resilience index of evacuated passengers while meeting pre-established restrictions on operational indicators and resources. The proposed approach consists of three steps: representing an integrated network based on a hyper-network, generating candidate bus-bridging routes using the K-shortest paths algorithm, and solving the optimization model using a genetic algorithm to determine the optimal vehicle allocation among the candidate routes. The Nanjing metro network was used to demonstrate the proposed model. The results show that the average waiting time is the main reason for travel delays, especially in short-distance travel. Furthermore, the cycling strategy is beneficial for reducing the average travel delay and improving evacuation efficiency with limited vehicles. In particular, when resources are very limited, the vehicle cycling strategy may have significant advantages over fixed vehicles for servicing fixed lines. The proposed model could be widely used in emergency response to quickly and efficiently evacuate passengers.
Assuntos
Veículos Automotores , Meios de Transporte , Meios de Transporte/métodos , Viagem , Software , AlgoritmosRESUMO
Realization of quantum optical circuits is at the heart of quantum photonic information processing. A long-standing obstacle, however, has been the absence of a suitable platform of single photon sources (SPSs). Such SPSs need to be in spatially ordered arrays and produce, on-demand, highly pure, and indistinguishable single photons with sufficiently uniform emission characteristics to enable controlled interference between photons from distinct sources underpinning functional quantum optical networks. We report on such a platform of SPSs based on a unique class of epitaxial quantum dots dubbed mesa-top single quantum dot. Under resonant excitation, the spatially ordered SPSs (without Purcell enhancement) show single photon purity of >99% [g(2)(0) ~ 0.015], high two-photon Hong-Ou-Mandel interference visibilities of 0.82 ± 0.03 (at 11.5 kelvin, without cavity), and spectral nonuniformity of <3 nanometers, within established locally tunable technology. Our platform of SPSs paves the path to creating on-chip scalable quantum photonic networks for communication, computation, simulation, sensing and imaging.
RESUMO
Recycling critical metals from spent Li-ion batteries (LIBs) is important for the overall sustainability of future batteries. This study reports an improved sulfation roasting technology to efficiently recycle Li and Co from spent LiCoO2 LIBs using potassium pyrosulfate as sulfurizing reagent. By sulfation roasting, LiCoO2 was converted into water-soluble lithium potassium sulfate and water-insoluble cobalt oxide. Under optimal conditions, 98.51% Li was leached in water, with a selectivity of 99.86%. More importantly, sulfur can be recirculated thoroughly, and the sulfur atomic efficiency can be significantly enhanced by controlling the amount of potassium pyrosulfate. Li ions from the water leaching process were recovered by chemical precipitation. Furthermore, application of this technology to other spent LIBs, such as LiMn2O4 and LiNi0.5Co0.2Mn0.3O2, verified its effectiveness for selective recovery Li. These findings can provide some inspiration for high efficiency and environmentally friendly recovery metal from spent LIBs.
RESUMO
Equipment manufacturing industry is one of the major industries of the Chinese economy. Previous researches have revealed that the industry has dilemmas of unreasonable industrial structure and high pollution. Using the data of 30 provinces in 2006-2015 in China, this study calculated a comprehensive pollution indicator when estimating the possible pollution reduction brought by the optimization of industrial structure and then evaluated the reasonable level of capital allocation of provinces and industries by using the methods of nonlinear programming and stochastic frontier method. Under the target of collaborative emission reduction, the results show that the optimized output of China's equipment manufacturing industry could be increased by 5.42%, the energy intensity could be reduced by about 10.4%, and the comprehensive emission intensity could be reduced by about 7.47%. Due to the industry heterogeneity and regional heterogeneity, industrial capacity should be transferred between industries and regions. Since the capital investment in the equipment manufacturing industry is significantly mismatched between industries and regions, the capital allocation of provincial industries in China needs to be adjusted properly. This study provides theoretically and practically reference for collaborative pollution reduction, industry restructure, spatial layout and capital investment, which contributes to achieving the stereoscopic optimization of equipment manufacturing industry.