Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Acta Pharmacol Sin ; 45(2): 248-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833536

RESUMO

There are few effective and safe neuroprotective agents for the treatment of ischemic stroke currently. Caffeic acid is a phenolic acid that widely exists in a number of plant species. Previous studies show that caffeic acid ameliorates brain injury in rats after cerebral ischemia/reperfusion. In this study we explored the protective mechanisms of caffeic acid against oxidative stress and ferroptosis in permanent cerebral ischemia. Ischemia stroke was induced on rats by permanent middle cerebral artery occlusion (pMCAO). Caffeic acid (0.4, 2, 10 mg·kg-1·d-1, i.g.) was administered to the rats for 3 consecutive days before or after the surgery. We showed that either pre-pMCAO or post-pMCAO administration of caffeic acid (2 mg·kg-1·d-1) effectively reduced the infarct volume and improved neurological outcome. The therapeutic time window could last to 2 h after pMCAO. We found that caffeic acid administration significantly reduced oxidative damage as well as neuroinflammation, and enhanced antioxidant capacity in pMCAO rat brain. We further demonstrated that caffeic acid down-regulated TFR1 and ACSL4, and up-regulated glutathione production through Nrf2 signaling pathway to resist ferroptosis in pMCAO rat brain and in oxygen glucose deprivation/reoxygenation (OGD/R)-treated SK-N-SH cells in vitro. Application of ML385, an Nrf2 inhibitor, blocked the neuroprotective effects of caffeic acid in both in vivo and in vitro models, evidenced by excessive accumulation of iron ions and inactivation of the ferroptosis defense system. In conclusion, caffeic acid inhibits oxidative stress-mediated neuronal death in pMCAO rat brain by regulating ferroptosis via Nrf2 signaling pathway. Caffeic acid might serve as a potential treatment to relieve brain injury after cerebral ischemia. Caffeic acid significantly attenuated cerebral ischemic injury and resisted ferroptosis both in vivo and in vitro. The regulation of Nrf2 by caffeic acid initiated the transcription of downstream target genes, which were shown to be anti-inflammatory, antioxidative and antiferroptotic. The effects of caffeic acid on neuroinflammation and ferroptosis in cerebral ischemia were explored in a primary microglia-neuron coculture system. Caffeic acid played a role in reducing neuroinflammation and resisting ferroptosis through the Nrf2 signaling pathway, which further suggested that caffeic acid might be a potential therapeutic method for alleviating brain injury after cerebral ischemia.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ácidos Cafeicos , Ferroptose , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Lesões Encefálicas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Antioxidantes/farmacologia , Traumatismo por Reperfusão/metabolismo
2.
J Asian Nat Prod Res ; 26(5): 604-615, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634612

RESUMO

We established myocardial injury models in vivo and in vitro to investigate the cardioprotective effect of gomisin D obtained from Schisandra chinensis. Gomisin D significantly inhibited isoproterenol-induced apoptosis and hypertrophy in H9C2 cells. Gomisin D decreased serum BNP, ANP, CK-MB, cTn-T levels and histopathological alterations, and inhibited myocardial hypertrophy in mice. In mechanisms research, gomisin D reversed ISO-induced accumulation of intracellular ROS and Ca2+. Gomisin D further improved mitochondrial energy metabolism disorders by regulating the TCA cycle. These results demonstrated that gomisin D had a significant effect on isoproterenol-induced myocardial injury by inhibiting oxidative stress, calcium overload and improving mitochondrial energy metabolism.


Assuntos
Apoptose , Isoproterenol , Estresse Oxidativo , Compostos Policíclicos , Schisandra , Animais , Isoproterenol/farmacologia , Camundongos , Estrutura Molecular , Schisandra/química , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Lignanas/farmacologia , Lignanas/química , Cardiotônicos/farmacologia , Linhagem Celular , Miócitos Cardíacos/efeitos dos fármacos , Ciclo-Octanos/farmacologia , Ciclo-Octanos/química
3.
Small ; 18(9): e2105021, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35088527

RESUMO

Atherosclerosis (AS) is associated with high morbidity and mortality, thus imposing a growing burden on modern society. Herb-derived bicyclol (BIC) is a versatile bioactive compound that can be used to treat AS. However, its efficacy in AS is not yet described. Here, it is shown that BIC normalizes gut microflora dysbiosis induced by a high fat diet in Apoe(-/-) mice. Metagenome-wide association study analysis verifies that the modulation on carbohydrate-active enzymes and short-chain fatty acid generating genes in gut flora is among the mechanisms. The gut healthiness, especially the gut immunity and integrity, is restored by BIC intervention, leading to improved systemic immune cell dynamic and liver functions. Accordingly, the endothelial activation, macrophage infiltration, and cholesterol ester accumulation in the aortic arch are alleviated by BIC to lessen the plaque onset. Moreover, it is proved that the therapeutic effect of BIC on AS is transmissible by fecal microbiota transplantation. The current study, for the first time, demonstrates the antiatherosclerotic effects of BIC and shows that its therapeutic value can at least partially be attributed to its manipulation of gut microbiota.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Animais , Aterosclerose/tratamento farmacológico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Disbiose , Camundongos , Camundongos Endogâmicos C57BL
4.
Anal Chem ; 92(12): 8487-8496, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32412732

RESUMO

The profile of cholesteryl esters (CEs) is increasingly used in metabolic disease monitoring due to the roles of CE in regulating the cholesterol level. While electrospray ionization-tandem mass spectrometry is routinely applied for the identification and quantitation of CE, it has a limitation of not being able to provide the location of carbon-carbon double bond (C═C) within unsaturated fatty acyls. In this study, we paired offline 2-acetylpyridine (2-AP) Paternò-Büchi (PB) reaction and reversed-phase liquid chromatography-tandem mass spectrometry to achieve highly sensitive and structural informative CE analysis from complex mixtures. The 2-AP PB reactions of CE standards provided 20-30% conversion but resulted in enhanced ion signal relative to that of intact CE detected as ammonium adduct ions. MS/MS of 2-AP derivatized CE via collision-induced dissociation produced two abundant diagnostic ions for each C═C in a fatty acyl, leading to both sensitive identification and quantitation of C═C location isomers. Twelve saturated and twenty-seven unsaturated CEs were profiled in pooled human plasma; of the latter group, relative quantitation of 6 groups of C═C location isomers was achieved. A dehydrocholesteryl ester, DHE 18:2 (Δ9,12), was confidently differentiated from coexisting compositional isomers: CE 18:3 (Δ9,12,15) and CE 18:3 (Δ6,9,12). The above results represented improved CE coverage at the C═C location level over those reported by gas chromatography MS or acetone PB-MS/MS methods.

5.
Eur Respir J ; 56(5)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32513782

RESUMO

Pathological mechanisms of pulmonary arterial hypertension (PAH) remain largely unexplored. Effective treatment of PAH remains a challenge. The aim of this study was to discover the underlying mechanism of PAH through functional metabolomics and to help develop new strategies for prevention and treatment of PAH.Metabolomic profiling of plasma in patients with idiopathic PAH was evaluated through high-performance liquid chromatography mass spectrometry, with spermine identified to be the most significant and validated in another independent cohort. The roles of spermine and spermine synthase were examined in pulmonary arterial smooth muscle cells (PASMCs) and rodent models of pulmonary hypertension.Using targeted metabolomics, plasma spermine levels were found to be higher in patients with idiopathic PAH compared to healthy controls. Spermine administration promoted proliferation and migration of PASMCs and exacerbated vascular remodelling in rodent models of pulmonary hypertension. The spermine-mediated deteriorative effect can be attributed to a corresponding upregulation of its synthase in the pathological process. Inhibition of spermine synthase in vitro suppressed platelet-derived growth factor-BB-mediated proliferation of PASMCs, and in vivo attenuated monocrotaline-mediated pulmonary hypertension in rats.Plasma spermine promotes pulmonary vascular remodelling. Inhibiting spermine synthesis could be a therapeutic strategy for PAH.


Assuntos
Hipertensão Arterial Pulmonar , Animais , Proliferação de Células , Modelos Animais de Doenças , Glicogênio Sintase , Humanos , Miócitos de Músculo Liso , Artéria Pulmonar , Ratos , Espermina , Remodelação Vascular
6.
J Sep Sci ; 43(1): 31-55, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31573133

RESUMO

The formation of DNA adducts by genotoxic agents is an early event in cancer development, and it may lead to gene mutations, thereby initiating tumor development. The measurement of DNA adducts can provide critical information about the genotoxic potential of a chemical and its mechanism of carcinogenesis. In recent decades, liquid chromatography coupled with mass spectrometry has become the most important technique for analyzing DNA adducts. The improvements in resolution achievable with new chromatographic separation techniques coupled with the high specificity and sensitivity and wide dynamic range of new mass spectrometry systems have been used for both qualitative and quantitative analyses of DNA adducts. This review discusses the challenges in qualitative and quantitative analyses of DNA adducts by liquid chromatography coupled with mass spectrometry and highlights recent developments towards overcoming the limitations of liquid chromatography coupled with mass spectrometry methods. The key steps and new solutions, such as sample preparation, mass spectrometry fragmentation, and method validation, are summarized. In addition, the fundamental principles and latest advances in DNA adductomic approaches are reviewed.


Assuntos
Adutos de DNA/análise , Sequência de Bases , Cromatografia Líquida , Humanos , Espectrometria de Massas
7.
Anal Chem ; 91(7): 4504-4512, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30840439

RESUMO

Cholesteryl esters (CEs) are formed by the 3-hydroxyl group of cholesterol and a fatty acyl chain through an ester bond and function as a biologically inert storage form of cholesterol. Abnormal CE levels are often related to various diseases, particularly hyperlipidemia and atherosclerosis. Herein, we developed a mathematical model-assisted ultrahigh performance liquid chromatography-mass spectrometry (UHPLC-MS) method for the untargeted identification to targeted quantification of CEs in plasma, different density lipoprotein samples from humans, rats, and golden hamsters. Using UHPLC-quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS), 81 CE candidates were detected in the above samples, of which 24 CEs were reported in the Human Metabolome Database and 57 CEs were newly identified based on an in-house database of theoretically possible CEs, including the computationally generated precursor ion m/ z mass of CE, carbon number and double bond numbers of the fatty acyl chain. Then three mathematical models based on the characteristic chromatographic retention behavior related to structural features were established and validated using commercial and synthetic CE standards. The mathematical model-assisted UHPLC-MS/MS strategy was proposed to provide a global profiling and identification of CEs, especially unknown CEs. With the efficient strategy, 74 CEs in the plasma of golden hamsters were identified and then quantified in normal and hyperlipidemic golden hamsters by dynamic multiple reaction monitoring (dMRM). A total of 21 CEs among 35 shared potential biomarkers were newly found for hyperlipidemia. Our work will contribute to the in-depth study of the functions of CEs and the discovery of disease biomarkers.


Assuntos
Ésteres do Colesterol/análise , Hiperlipidemias/metabolismo , Modelos Teóricos , Espectrometria de Massas em Tandem/métodos , Animais , Biomarcadores/análise , Biomarcadores/sangue , Ésteres do Colesterol/sangue , Cromatografia Líquida de Alta Pressão , Cricetinae , Dieta Hiperlipídica , Modelos Animais de Doenças , Hiperlipidemias/patologia , Limite de Detecção , Mesocricetus , Análise de Componente Principal
8.
J Sep Sci ; 41(1): 351-372, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28859259

RESUMO

Lipids, which have a core function in energy storage, signalling and biofilm structures, play important roles in a variety of cellular processes because of the great diversity of their structural and physiochemical properties. Lipidomics is the large-scale profiling and quantification of biogenic lipid molecules, the comprehensive study of their pathways and the interpretation of their physiological significance based on analytical chemistry and statistical analysis. Lipidomics will not only provide insight into the physiological functions of lipid molecules but will also provide an approach to discovering important biomarkers for diagnosis or treatment of human diseases. Mass-spectrometry-based analytical techniques are currently the most widely used and most effective tools for lipid profiling and quantification. In this review, the field of mass-spectrometry-based lipidomics was discussed. Recent progress in all essential steps in lipidomics was carefully discussed in this review, including lipid extraction strategies, separation techniques and mass-spectrometry-based analytical and quantitative methods in lipidomics. We also focused on novel resolution strategies for difficult problems in determining C=C bond positions in lipidomics. Finally, new technologies that were developed in recent years including single-cell lipidomics, flux-based lipidomics and multiomics technologies were also reviewed.


Assuntos
Lipídeos/isolamento & purificação , Espectrometria de Massas , Metabolômica , Animais , Biomarcadores/análise , Cromatografia , Humanos , Cinética , Metabolismo dos Lipídeos , Lipídeos/química , Ozônio
9.
Anal Chem ; 89(14): 7808-7816, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28643517

RESUMO

Acidic glycosphingolipids (AGSLs), which mainly consist of ganglioside and sulfatide moieties, are highly concentrated in the central nervous system. Comprehensive profiling of AGSLs has historically been challenging because of their high complexity and the lack of standards. In this study, a novel strategy was developed to comprehensively profile AGSLs using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Ganglioside isomers with different glycan chains such as GD1a/GD1b were completely separated on a C18 column for the first time to our knowledge, facilitated by the addition of formic acid in the mobile phase. A mathematical model was established to predict the retention times (RTs) of all theoretically possible AGSLs on the basis of the good logarithmic relationship between the ceramide carbon numbers of the AGSLs in the reference material and their RTs. A data set was created of 571 theoretically possible AGSLs, including the ceramide carbon numbers, RTs, and high-resolution quasi-molecular ions. A novel fast identification strategy was established for global AGSL profiling by comparing the high-resolution quasi-molecular ions and RTs of the tested peaks to those in the data set of 571 AGSLs. Using this strategy, 199 AGSL candidates were identified in rat brain tissue. MS/MS fragments were further collected for these 199 candidates to confirm their identity as AGSLs. This novel strategy was employed to profile AGSLs in brain tissue samples from control rats and model rats with bilateral common carotid artery (2-VO) cerebral ischemia. Forty AGSLs were significantly different between the control and model groups, and these differences were further interpreted.

10.
Biochem Biophys Res Commun ; 488(1): 109-115, 2017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28479244

RESUMO

To investigate the effects of the PI3K inhibitors on the differentiation of insulin-producing cells derived from human embryonic stem cells. Here, we report that human embryonic stem cells induced by phosphatidylinositol-3-kinase (PI3K) p110ß inhibitors could produce more mature islet-like cells. Findings were validated by immunofluorescence analysis, quantitative real-time PCR, insulin secretion in vitro and cell transplantation for the diabetic SCID mice. Immunofluorescence analysis revealed that unihormonal insulin-positive cells were predominant in cultures with rare polyhormonal cells. Real-time PCR data showed that islet-like cells expressed key markers of pancreatic endocrine hormones and mature pancreatic ß cells including MAFA. Furthermore, this study showed that the expression of most pancreatic endocrine hormones was similar between groups treated with the LY294002 (nonselective PI3K inhibitor) and TGX-221 (PI3K isoform selective inhibitors of class 1ß) derivatives. However, the level of insulin mRNA in TGX-221-treated cells was significantly higher than that in LY294002-treated cells. In addition, islet-like cells displayed glucose-stimulated insulin secretion in vitro. After transplantation, islet-like cells improved glycaemic control and ameliorated the survival outcome in diabetic mice. This study demonstrated an important role for PI3K p110ß in regulating the differentiation and maturation of islet-like cells derived from human embryonic stem cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Células Cultivadas , Cromonas/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos SCID , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/química , Pirimidinonas/farmacologia , Relação Estrutura-Atividade
11.
Anal Chem ; 88(15): 7762-8, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27397858

RESUMO

Fatty aldehydes are crucial substances that mediate a wide range of vital physiological functions, particularly lipid peroxidation. Fatty aldehydes such as acrolein and 4-hydroxynonenal (4-HNE) are considered potential biomarkers of myocardial ischemia and dementia, but analytical techniques for fatty aldehydes are lacking. In the present study, a comprehensive characterization strategy with high sensitivity and facility for fatty aldehydes based on derivatization and high-performance liquid chromatography-multiple reaction monitoring (HPLC-MRM) was developed. The fatty aldehydes of a biosample were derivatized using 2,4-bis(diethylamino)-6-hydrazino-1,3,5-triazine under mild and efficient reaction conditions at 37 °C for 15 min. The limit of detection (LOD) of the fatty aldehydes varied from 0.1 to 1 pg/mL, depending on the structures of these molecules. General MRM parameters were forged for the analysis of endogenous fatty aldehydes. "Heavy" derivatization reagents with 20 deuterium atoms were synthesized for both the discovery and comprehensive characterization of fatty aldehydes. More than 80 fatty aldehydes were detected in the biosamples. The new strategy was successfully implemented in global fatty aldehyde profiling of plasma and brain tissue of the bilateral common carotid artery (2VO) dementia rat model. Dozens of fatty aldehydes were significantly changed between the control and model groups. These findings further highlight the importance of endogenous fatty aldehydes.


Assuntos
Aldeídos/análise , Cromatografia Líquida de Alta Pressão , Ácidos Graxos/análise , Acroleína/análise , Acroleína/química , Aldeídos/sangue , Aldeídos/química , Animais , Biomarcadores/análise , Biomarcadores/sangue , Encéfalo/metabolismo , Demência/patologia , Deutério/química , Análise Discriminante , Modelos Animais de Doenças , Ácidos Graxos/sangue , Limite de Detecção , Masculino , Análise de Componente Principal , Ratos , Ratos Wistar , Triazinas/química
12.
Anal Bioanal Chem ; 408(24): 6623-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27473427

RESUMO

Skin, the largest organ of the human body, serves as the primary barrier to the external environment. Ceramides are one of the main constituents of stratum corneum (SC), playing an important role in skin barrier function. Therefore, comprehensive profiling and quantification of SC ceramide is important. Herein, a new targeted lipidomic method for human SC ceramide profiling and quantification is presented and tested. Normal-phase high-performance liquid chromatography coupled with dynamic multiple reaction monitoring mass spectrometry (NP-HPLC-dMRM-MS) was used to separate ceramides into subclasses and then characterize different ceramides within each subclass on the basis of their characteristics. In total, 483 ceramides were quantified in a single run within 20 min, covering 12 subclasses as well as some glycosylated ceramides not previously reported. Each subclass had typical standard substances (if available) that served to establish representative standard curves and were used for related substances with no standards. Linearity range, limit of quantification (LOQ), limit of detection (LOD), precision, accuracy, stability, and matrix effects were validated. dMRM increased sensitivity and accuracy greatly compared with common MRM (cMRM). This method was successfully applied to the study of human SC from different age groups. A total of 193 potential biomarkers were found to indicate age differences between children and adults. This method is an innovative approach for high-throughput quantification of SC ceramide. Graphical Abstract Method establishment (MRM spectra by the established method) and method application (score scatter plots of authentic samples).


Assuntos
Ceramidas/análise , Cromatografia Líquida de Alta Pressão/métodos , Epiderme/química , Espectrometria de Massas/métodos , Adulto , Criança , Humanos , Limite de Detecção
13.
Anal Chem ; 87(16): 8181-5, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26189701

RESUMO

Fatty acids (FAs) are a group of lipid molecules that are essential to organisms. As potential biomarkers for different diseases, FAs have attracted increasing attention from both biological researchers and the pharmaceutical industry. A sensitive and accurate method for globally profiling and identifying FAs is required for biomarker discovery. The high selectivity and sensitivity of high-performance liquid chromatography-multiple reaction monitoring (HPLC-MRM) gives it great potential to fulfill the need to identify FAs from complicated matrices. This paper developed a new approach for global FA profiling and identification for HPLC-MRM FA data mining. Mathematical models for identifying FAs were simulated using the isotope-induced retention time (RT) shift (IRS) and peak area ratios between parallel isotope peaks for a series of FA standards. The FA structures were predicated using another model based on the RT and molecular weight. Fully automated FA identification software was coded using the Qt platform based on these mathematical models. Different samples were used to verify the software. A high identification efficiency (greater than 75%) was observed when 96 FA species were identified in plasma. This FAs identification strategy promises to accelerate FA research and applications.


Assuntos
Cromatografia Líquida de Alta Pressão , Ácidos Graxos/análise , Animais , Automação , Ácidos Graxos/sangue , Ácidos Graxos/química , Ratos , Software
14.
Yao Xue Xue Bao ; 50(6): 755-9, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26521449

RESUMO

With development of bio-technique, more and more proteins were applied as clinical approaches. However, the protein homogeneity, especially the N-glycosylation limited the further research and application of these protein drugs. The analysis method for N-glycans is believed to be critical in protein drugs development. To enhance the N-glycans isolation efficiency and accelerate the pretreatment, a new strategy was built on ultrafiltration-devices. New methods increased the isolation efficiency of N-glycans containing N-acetylglucosa mine with 10%-20%. The degrading of N-glycans containing sialic acids was also minimized with this method. 20%-100% more N-glycans with sialic acids were isolated. The pretreatment was finished within 30 min. Coupled with HPLC-HRMS, an effective and reliable strategy designed for protein drugs N-glycans analysis were developed.


Assuntos
Glicoproteínas/química , Glicosilação , Ultrafiltração/instrumentação , Polissacarídeos/química
15.
Yao Xue Xue Bao ; 50(12): 1551-8, 2015 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-27169276

RESUMO

Sphingolipids, especially ceramide and S1P, are structural components of biological membranes and bioactive molecules which participate in diverse cellular activities such as cell division, differentiation, gene expression and apoptosis. Emerging evidence demonstrates the role of sphingolipids in hepatocellular death, which contributes to the progression of several liver diseases including ischaemia-reperfusion liver injury, steatohepatitis or hepatocarcinogenesis. Furthermore, some data indicate that the accumulation of some sphingolipids contributes to the hepatic dysfunctions. Hence, understanding of sphingolipid may open up a novel therapeutic avenue to liver diseases. This review focuses on the progress in the sphingolipid metabolic pathway with a focus on hepatic diseases and drugs targeting the sphingolipid pathway.


Assuntos
Hepatopatias/metabolismo , Esfingolipídeos/metabolismo , Apoptose , Ceramidas/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Humanos , Hepatopatias/fisiopatologia , Lisofosfolipídeos/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo
16.
Anal Bioanal Chem ; 406(2): 555-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24253410

RESUMO

Chronic hepatitis C virus (HCV) infection is a global health issue. Although its progression is reported to be closely associated with lipids, the way in which the plasma lipidome changes during the development of chronic HCV infection in humans is currently unknown. Using an improved quantitative high-throughput lipidomic platform, we profiled 284 lipids in human plasma samples obtained from healthy controls (n = 11) and patients with chronic HCV infection (n = 113). The intrahepatic inflammation grade (IG) of liver tissue was determined by biopsy. Two types of mass spectrometers were integrated into a single lipidomic platform with a wide dynamic range. Compared with previous methods, the performance of this method was significantly improved in terms of both the number of target sphingolipids identified and the specificity of the high-resolution mass spectrometer. As a result, 44 sphingolipids, one diacylglycerol, 43 triglycerides, 24 glycerophosphocholines, and 5 glycerophospho-ethanolamines were successfully identified and quantified. The lipid profiles of individuals with chronic HCV infection were significantly different from those of healthy individuals. Several lipids showed significant differences between mild and severe intrahepatic inflammation grades, indicating that they could be utilized as novel noninvasive indicators of intrahepatic IG. Using multivariate analysis, healthy controls could be discriminated from HCV patients based on their plasma lipidome; however, patients with different IGs were not well discriminated. Based on these results, we speculate that variations in lipid composition arise as a result of HCV infection, and are caused by HCV-related digestive system disorders rather than progression of the disease.


Assuntos
Hepacivirus/fisiologia , Hepatite C Crônica/sangue , Fígado/patologia , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Diglicerídeos/sangue , Hepatite C Crônica/patologia , Hepatite C Crônica/virologia , Interações Hospedeiro-Patógeno , Humanos , Inflamação/sangue , Inflamação/patologia , Inflamação/virologia , Fígado/metabolismo , Fígado/virologia , Espectrometria de Massas , Análise Multivariada , Fosfatidiletanolaminas/sangue , Esfingolipídeos/sangue , Triglicerídeos/sangue
17.
Acta Pharmacol Sin ; 35(6): 779-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24747163

RESUMO

AIM: To investigate the effects of Vam3 (a resveratrol dimer extracted from Vitis amurensis Rupr) on cigarette smoke (CS)-induced cell apoptosis in lungs in vitro and in vivo and the underlying mechanisms of action. METHODS: Human bronchial epithelial cell line BEAS-2B was exposed to cigarette smoke condensate (CSC, 300 mg/L), and cell apoptosis was determined using flow cytometry and Hoechst staining. Mitochondrial membrane potential was examined with TMRE staining. ROS and ceramide levels were detected with DCFH-DA fluorescence and HPLC-MS/MS, respectively. Cytochrome c release was detected using immunofluorescence. Caspase-9 and neutral sphingomyelinase 2 expression was measured with Western blotting. The breast carcinoma cell line MCF7 stably expressing GFP-tagged Bax was used to elucidate the role of mitochondria in CS-induced apoptosis. For in vivo study, male mice were exposed to CS for 5 min twice a day for 4 weeks. The mice were orally administered Vam3 (50 mg·kg(-1)·d(-1)) or resveratrol (30 mg·kg(-1)·d(-1)) each day 1 h before the first CS exposure. RESULTS: Pretreatment of BEAS-2B cells with Vam3 (5 µmol/L) or resveratrol (5 µmol/L) significantly suppressed CSC-induced apoptosis, and prevented CSC-induced Bax level increase in the mitochondria, mitochondrial membrane potential loss, cytochrome c release and caspase-9 activation. Furthermore, pretreatment of BEAS-2B cells with Vam3 or resveratrol significantly suppressed CSC-stimulated intracellular ceramide production, and CSC-induced upregulation of neutral sphingomyelinase 2, the enzyme responsible for ceramide production in bronchial epithelial cells. Similar results were obtained in C6-pyridinium ceramide-induced apoptosis of GFP-Bax-stable MCF7 cells in vitro, and in the lungs of CS-exposed mice that were treated with oral administration of Vam3 or resveratrol. CONCLUSION: Vam3 protects bronchial epithelial cells from CS-induced apoptosis in vitro and in vivo by preventing mitochondrial dysfunction.


Assuntos
Antiasmáticos/química , Antiasmáticos/farmacologia , Apoptose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Fumar/efeitos adversos , Estilbenos/química , Estilbenos/farmacologia , Animais , Caspase 9/metabolismo , Linhagem Celular , Citocromos c/metabolismo , Dimerização , Humanos , Pulmão/citologia , Pulmão/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Resveratrol , Fumaça/efeitos adversos , Nicotiana/química , Vitis/química
18.
J Asian Nat Prod Res ; 16(5): 497-510, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24697158

RESUMO

In this paper, the metabolites of four soy isoflavones, daidzein, daidzin, genistein, and genistin, on perfused rat intestine-liver model were investigated by high-performance liquid chromatography coupled with high-resolution mass spectrometer/tandem mass spectrometer. Totally 16 metabolites were detected and identified based on accurate mass, fragmentation patterns, and multiple-stage mass data (MS(n)). The metabolic site of dadzein-7-methyl ether (D-7-M) was further confirmed by nuclear magnetic resonance. Methylation, glucuronide conjugation, and sulfate conjugation were the primary metabolic processes. Among them, six metabolites, daidzin-4',7-diglucoside, genistein-4'-glucoside, D-7-M, dadzein-4',7-dimethyl ether, genistein-4'-methyl ether, and genistein-7-methyl ether were detected in rats for the first time and not reported in humans. The metabolic pathways of daidzein, daidzin genistein, and genistin in rats were postulated. The biological effects of these metabolites are worthy of further investigation.


Assuntos
Genisteína/farmacologia , Isoflavonas/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Humanos , Masculino , Estrutura Molecular , Ratos
19.
Rapid Commun Mass Spectrom ; 27(9): 971-8, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23592199

RESUMO

RATIONALE: Methotrexate (MTX) is an antineoplastic therapeutic medicine that acts as an antimetabolite of folic acid. In this study we identified the impurities in MTX drug substances produced by different manufacturers and in different batches using high-performance liquid chromatography coupled with a photodiode array detector and Fourier transform ion cyclotron resonance mass spectrometry (HPLC-PDA/FTICR-MS). METHODS: MTX and its impurities were separated on a Restek Pinnacle II C18 column (250 × 4.6 mm, 5 µm) with a gradient elution system composed of 0.2% formic acid and acetonitrile at a flow rate of 1.0 mL/min. Ultraviolet (UV) detection was set at 305 nm. Mass detection was carried out using FTICR-MS with full-scan mass analysis at a resolving power of 100 000 coupled with multiple-stage mass analysis using a parent list of compounds. RESULTS: Fifteen impurities were detected in MTX drug substances, and their structures were predicted from using HPLC-PDA/FTICR-MS data, including their UV spectra, high-resolution mass spectrometry (HRMS), fragmentation patterns, and MS(n) spectra. Ten of the impurities detected in the MTX drug substances are reported for the first time. There was a high abundance of esterified impurities in some batches of MTX drug substances, over the identification threshold of International Conference on Harmonization (ICH) guidelines, which requires particular attention. CONCLUSIONS: This paper describes a HPLC-PDA/FTICR-MS method to profile and identify impurities in MTX drug substances. The results suggest that HPLC-PDA/FTICR-MS is a valuable analytical technique for the rapid identification of impurities.


Assuntos
Antimetabólitos Antineoplásicos/química , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Medicamentos , Espectrometria de Massas/métodos , Metotrexato/química , Ciclotrons , Análise de Fourier
20.
J Ethnopharmacol ; 306: 116158, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36638854

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dengzhan shengmai (DZSM) formula, composed of four herbal medicines (Erigeron breviscapus, Panax ginseng, Schisandra chinensis, and Ophiopogon japonicus), is widely used in the recovery period of ischemic cerebrovascular diseases; however, the associated molecular mechanism remains unclear. AIM OF THE STUDY: The purpose of this study was to uncover the links between the microbiota-gut-brain axis and the efficacy of DZSM in ameliorating cerebral ischemic diseases. MATERIALS AND METHODS: The effects of DZSM on the gut microbiota community and bacteria-derived short-chain fatty acid (SCFA) production were evaluated in vivo using a rat model of cerebral ischemia and in vitro through the anaerobic incubation with fresh feces derived from model animals. Subsequently, the mechanism underlying the role of SCFAs in the DZSM-mediated treatment of cerebral ischemia was explored. RESULTS: We found that DZSM treatment significantly altered the composition of the gut microbiota and markedly enhanced SCFA production. The consequent increase in SCFA levels led to the upregulation of the expression of monocarboxylate transporters and facilitated the transportation of intestinal SCFAs into the brain, thereby inhibiting the apoptosis of neurocytes via the regulation of the PI3K/AKT/caspase-3 pathway. The increased intestinal SCFA levels also contributed to the repair of the 2VO-induced disruption of gut barrier integrity and inhibited the translocation of lipopolysaccharide from the intestine to the brain, thus attenuating neuroinflammation. Consequently, cerebral neuropathy and oxidative stress were significantly improved in 2VO model rats, leading to the amelioration of cerebral ischemia-induced cognitive dysfunction. Finally, fecal microbiota transplantation could reproduce the beneficial effects of DZSM on SCFA production and cerebral ischemia. CONCLUSIONS: Our findings suggested that SCFAs mediate the effects of DZSM in ameliorating cerebral ischemia via the gut microbiota-gut-brain axis.


Assuntos
Isquemia Encefálica , Microbiota , Ratos , Animais , Eixo Encéfalo-Intestino , Fosfatidilinositol 3-Quinases , Ácidos Graxos Voláteis/metabolismo , Infarto Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA