Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Environ Sci (China) ; 138: 395-405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135405

RESUMO

The removal of ammonia (NH3) emitted from agricultural and industrial activities is of great significance to protect human health and ecological environment. Photocatalytic NH3 oxidation to N2 under mild conditions is a promising strategy. However, developing visible light photocatalysts for NH3 oxidation is still in its infancy. Here, we fabricate N-TiO2 and Ag/AgCl/N-TiO2 photocatalysts by sol-gel and photodeposition methods, respectively. The introduction of N not only endows TiO2 with visible light response (absorption edge at 460 nm) but also results in the formation of heterophase junction (anatase and rutile). Thus, N-TiO2 shows 2.0 and 1.8 times higher than those over anatase TiO2 and commercial TiO2 for NH3 oxidation under full spectrum irradiation. Meanwhile, surface modification of Ag can simultaneously enhance visible light absorption (generating localized surface plasmon resonance effect) and charge separation efficiency. Therefore, the photocatalytic activity of Ag/AgCl/N-TiO2 is further improved. Furthermore, the presence of N and Ag also enhances the selectivity of N2 product owing to the change of reaction pathway. This work simultaneously regulates photocatalytic conversion efficiency and product selectivity, providing some guidance for developing highly efficient photocatalysts for NH3 elimination.


Assuntos
Amônia , Nitrogênio , Humanos , Catálise , Titânio
2.
J Environ Sci (China) ; 142: 103-114, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527876

RESUMO

This study investigated degradation behaviors of a nonsteroidal anti-inflammatory drug Nabumetone (NMT) and its major metabolite 6-methoxy-2-naphthylacetic acid (MNA) in the coupling process of ultraviolet and monochloramine (UV/NH2Cl). The second-order rate constants of the contaminants reacting with reactive radicals (HO•, Cl•, Cl2•⁻, and CO3•⁻) were determined by laser flash photolysis experiments. HO• and Cl• contributed predominantly with 52.3% and 21.7% for NMT degradation and 60.8% and 22.3% for MNA degradation. The presence of chlorides retarded the degradation of NMT, while promoted the destruction of MNA, which was ascribed to the photosensitization effects of MNA under UV irradiation. Density functional theory (DFT) calculations revealed that radical adduct formation (RAF) was dominant pathway for both HO• and Cl• reacting with the contaminants, and hydrogen atom transfer (HAT) preferred to occur on side chains of NMT and MNA. NMT reacted with NO2• through single electron transfer (SET) with the second-order rate constant calculated to be 5.35 × 107 (mol/L)-1 sec-1, and the contribution of NO2• was predicted to be 13.0% of the total rate constant of NMT in pure water, which indicated that NO2• played a non-negligible role in the degradation of NMT. The acute toxicity and developmental toxicity of NMT were enhanced after UV/NH2Cl treatment, while those of MNA were alleviated. The transformation products of both NMT and MNA exhibited higher mutagenicity than their parent compounds. This study provides a deep understanding of the mechanism of radical degradation of NMT and MNA in the treatment of UV/NH2Cl.


Assuntos
Cloraminas , Poluentes Químicos da Água , Purificação da Água , Nabumetona , Dióxido de Nitrogênio , Poluentes Químicos da Água/análise , Cinética , Raios Ultravioleta , Oxirredução , Modelos Teóricos , Cloro
3.
Angew Chem Int Ed Engl ; 62(27): e202304773, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37140400

RESUMO

Carrier transport is an equally decisive factor as carrier separation for elevating photocatalytic efficiency. However, limited by indefinite structures and low crystallinities, studies on enhancing carrier transport of organic photocatalysts are still in their infancy. Here, we develop an σ-linkage length modulation strategy to enhance carrier transport in imidazole-alkyl-perylene diimide (IMZ-alkyl-PDI, corresponding to D-σ-A) photocatalysts by controlling π-π stacking distance. Ethyl-linkage can shorten π-π stacking distance (3.19 Å) the most among IMZ-alkyl-PDIs (where alkyl=none, ethyl, and n-propyl) via minimizing steric hindrance between D and A moieties, which leads to the fastest carrier transport rates. Thereby, IMZ-ethyl-PDI exhibits remarkable enhancement in phenol degradation with 32-fold higher rates than IMZ-PDI, as well as the oxygen evolution rate (271-fold increased). In microchannel reactors, IMZ-ethyl-PDI also presents 81.5 % phenol removal with high-flux surface hydraulic loading (44.73 L m-2 h-1 ). Our findings provide a promising molecular design guideline for high-performance photocatalysts and elucidate crucial internal carrier transport mechanisms.

4.
Angew Chem Int Ed Engl ; 61(45): e202212243, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36124855

RESUMO

The insufficient charge separation and sluggish exciton transport severely limit the utilization of polymeric photocatalysts. To resolve the above issues, we incorporate bountiful carboxyl substituents within a novel benzodiimidazole oligomer and assemble it into a crystalline semiconductor. The photocatalyst is polar, hydrophilic, short-range crystalline, and capable of both hydrogen and oxygen evolution. The introduction of carboxyl side-groups adds asymmetry to the local structure and increases the built-in electric field. Further, accelerated carrier transfer is enabled via the short-range crystallinity. The superior hydrogen and oxygen production rates of 18.63 and 2.87 mmol g-1 h-1 represent one of the best performances ever reported among dual-functional polymeric photocatalysts. Our work initiates studies on high-performance oligomer photocatalysts, opening a new frontier to produce solar fuel.

5.
Ecotoxicol Environ Saf ; 225: 112741, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34481355

RESUMO

Volatile organic compounds (VOCs) are widely present in water environment, which can threaten ecological sustainability and human health. The concentrations of VOCs and their ecological risks in drinking water are of great concern to human beings. Therefore, 54 kinds of VOCs were investigated from 58 locations of the Yangtze River Delta Region (Yangtze River, Qiantang River, Huangpu River, Taihu Lake and Jiaxing Urban River). Out of 54 target compounds, only 31 VOCs were detected, with total concentrations ranging from 0.570 to 46.820 µg/L from 58 locations of all drinking water sources. Among all detected VOCs compounds, only toluene and styrene can cause high-level ecological risk at location TH-2 of Taihu Lake. According to the carcinogenic and non-carcinogenic risk index, compounds such as 1,2-dichloroethane, bromodichloromethane and 1,1,2-trichloroethane posed a higher carcinogenic risk, and 1,2-dichloroethane, trichloroethylene and toluene posed a higher non-carcinogenic risk. Olfactory risks of water bodies in the Yangtze River Delta region are negligible. Although the concentrations of VOCs in the Yangtze River Delta region did not exceed national standards in China and guidelines of the World Health Organization (WHO) for drinking water, the presence of some ecological and health risks indicated that future monitoring studies and control practices are important to ensure ecological safety of drinking water sources.


Assuntos
Água Potável , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , China , Monitoramento Ambiental , Humanos , Medição de Risco , Compostos Orgânicos Voláteis/análise , Poluentes Químicos da Água/análise
6.
Zhongguo Zhong Yao Za Zhi ; 45(2): 274-284, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-32237309

RESUMO

In this paper, five representative Chinese herbal decoction pieces of Scutellariae Radix, Paeoniae Radix Alba, vinegar-processed Corydalis Rhizoma, Polygoni Multiflori Radix Praeparata and Lonicerae Japonicae Flos were selected to prepare the corresponding fine powder of pieces, extract powder, semi-extract powder and physical mixed powder. The physical properties of 20 kinds of powders, such as related parameters of particle size, density, stability and flowability, were evaluated comprehensively. The compression curves of powder porosity and tensile strength changing with pressure were plotted, and the Heckel equation and the Kawakita equation were used to describe the powder compression behavior. The results showed that compared with the fine powder of pieces, the compressibility of the semi-extract powder and the extract powder was significantly improved. Compared with the extract powder, the particle size and relative uniformity of the semi-extract powder were increased, indicating that the uniformity of the powder was improved. Besides, the semi-extract powder could reduce the hygroscopicity of the powder. Particularly, the semi-extract powder of Scutellariae Radix, Paeoniae Radix Alba and vinegar-processed Corydalis Rhizoma could maintain the porous structure of the tablet even under a high tableting pressure, which was beneficial to tablet disintegration. For some traditional Chinese medicines(such as Lonicerae Japonicae Flos), the semi-extract powder could reduce the viscosity, which avoided the sticking in the die compression. The semi-extract powder and the physical mixture powder prepared by the same Chinese herbal decoction pieces had similar physical properties and compression behaviors. Principal component analysis(PCA) was carried out on the 17 physical attributes and 5 compression parameters of the powder. It was found that the first principal component mainly reflected the differences among the material sources, while the second principal component could reflect the differences among fine powder of pieces, extract powder, semi-extract powder and physical mixed powder originating from the same Chinese herbal decoction pieces. In this paper, the mechanism of "unification of drugs and excipients" of Chinese medicine semi-extract powder was explained in terms of physical properties and compression behavior of powders, which provided reference for the formulation design and process development of Chinese medicine tablets.


Assuntos
Composição de Medicamentos , Medicamentos de Ervas Chinesas , Excipientes , Medicina Tradicional Chinesa , Extratos Vegetais , Pós , Comprimidos , Tecnologia Farmacêutica
7.
Environ Sci Technol ; 53(10): 5926-5935, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31035751

RESUMO

Since the conventional Pd-based catalysts often suffer severe deactivation by water, development of a catalyst with good activity and moisture-resistance ability is of importance in effectively controlling emissions of volatile organic compounds (VOCs). Herein, we report the efficient synthesis of ultrathin palladium-tungsten bimetallic nanosheets with exceptionally high dispersion of tungsten species. The supported catalyst (TiO2/PdW) shows good performance for benzene oxidation, and 90% conversion is achieved at a temperature of 200 °C and a space velocity of 40 000 mL g-1 h-1. The TiO2/PdW catalyst also exhibits better water-tolerant ability than the traditional Pd/TiO2 catalyst. The high catalytic efficiency can be explained by the facile redox cycle of the active Pd2+/Pd0 couple in the close-contact PdO x-WO x-TiO2 arrangement. We propose that the reason for good tolerance to water is that the lattice oxygen of the TiO2/PdW catalyst can effectively replenish the oxygen in active PdO x sites consumed by benzene oxidation. A four-step benzene transformation mechanism promoted by the catalyst is proposed. The present work provides a useful idea for the rational design of efficient bimetallic catalysts for the removal of VOCs under the high humidity conditions.


Assuntos
Paládio , Tungstênio , Benzeno , Catálise , Oxirredução , Estresse Oxidativo
8.
J Environ Sci (China) ; 70: 74-86, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30037413

RESUMO

Three-dimensionally ordered mesoporous Fe2O3 (meso-Fe2O3) and its supported Au, Pd, and Au-Pd alloy (xAuPdy/meso-Fe2O3; x=0.08-0.72wt.%; Pd/Au molar ratio (y)=1.48-1.85) photocatalysts have been prepared via the KIT-6-templating and polyvinyl alcohol-protected reduction routes, respectively. Physical properties of the samples were characterized, and their photocatalytic activities were evaluated for the photocatalytic oxidation of acetone in the presence of a small amount of H2O2 under visible-light illumination. It was found that the meso-Fe2O3 was rhombohedral in crystal structure. The as-obtained samples displayed a high surface area of 111.0-140.8m2/g and a bandgap energy of 1.98-2.12eV. The Au, Pd and/or Au-Pd alloy nanoparticles (NPs) with a size of 3-4nm were uniformly dispersed on the surface of the meso-Fe2O3 support. The 0.72wt.% AuPd1.48/meso-Fe2O3 sample performed the best in the presence of 0.06mol/L H2O2 aqueous solution, showing a 100% acetone conversion within 4hr of visible-light illumination. It was concluded that the good performance of 0.72wt.% AuPd1.48/meso-Fe2O3 for photocatalytic acetone oxidation was associated with its ordered mesoporous structure, high adsorbed oxygen species concentration, plasmonic resonance effect between AuPd1.48 NPs and meso-Fe2O3, and effective separation of the photogenerated charge carriers. In addition, the introduction of H2O2 and the involvement of the photo-Fenton process also played important roles in enhancing the photocatalytic activity of 0.72wt.% AuPd1.48/meso-Fe2O3.


Assuntos
Acetona/química , Compostos Férricos/química , Ouro/química , Chumbo/química , Processos Fotoquímicos , Catálise , Peróxido de Hidrogênio , Luz , Modelos Químicos , Nanopartículas
9.
J Hazard Mater ; 469: 133936, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479139

RESUMO

Water quality in the Yangtze River Basin (YRB) has received considerable attention because it supplies water to 400 million people. However, the trends, sources, and risks associated with heavy metals (HMs) in water of centralized drinking water sources (CDWSs) in the YRB region are not well understood due to the lack of high-frequency, large-scale monitoring data. Moreover, research on the factors affecting the transportation of HMs in natural water are limited, all of which significantly reduce the effectiveness of CDWSs management. Therefore, this study utilized data on 11 HMs and water quality from 114 CDWSs, covering 71 prefecture-level cities (PLC) in 15 provinces (cities), to map unprecedented geospatial distribution of HMs in the YRB region and examine their concentrations in relation to water chemistry parameters. The findings revealed that the frequency of detection (FOD) of 11 HMs ranged from 28.59% (Hg) to 99.64% (Ba). The mean concentrations are ranked as follows: Ba (40.775 µg/L) > B (21.866 µg/L) > Zn (5.133 µg/L) > V (2.668 µg/L) > Cu (2.049 µg/L) > As (1.989 µg/L) > Mo (1.505 µg/L) > Ni (1.108 µg/L) > Sb (0.613 µg/L) > Pb (0.553 µg/L) > Hg (0.002 µg/L). Concentrations of Zn, As, Hg, Pb, Mo, Sb, Ni, and Ba exhibited decreasing trends from 2018 to 2022. Human activities, including industrial and agricultural production, have led to higher pollution levels in the midstream and downstream of the river than in its upstream. Additionally, the high concentrations of Ba and B are influenced by natural geological factors. Anion concentrations and nutrient levels, play a significant role in the transport of HMs in water. Probabilistic health risk assessment indicates that As, Ba, and Sb pose a potential carcinogenic risk. Additionally, non-carcinogenic risk to children under extreme conditions should also be considered.

10.
Int J Biol Macromol ; 261(Pt 1): 129697, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272409

RESUMO

We identified Armillariella tabescens polysaccharide (PAT-W), a compound isolated from a Chinese medicinal mushroom, as a potential novel oral ulcer (OU) drug. In treating OU rats with PAT-W, especially in the high-dose group, oral mucous tissue TNF-α, IL-1ß, and IL-6 levels were markedly reduced, and pathological morphology and oxidative stress were effectively improved. Western blot analysis showed that the PAT-W channel ameliorated OU mucous tissue damage, which depends on the activation of the Nrf2/HO-1 antioxidant signaling pathway. Furthermore, high-throughput sequencing results showed that PAT-W regulated the maladjustment of the oral microbiota caused by OU. Therefore, based on the new viewpoint of activating the Nrf2/HO-1 pathway and regulating oral microbiota, PAT-W is expected to become a new natural drug for treating oral ulcers and improving patients' quality of life.


Assuntos
Armillaria , Microbiota , Úlceras Orais , Ratos , Animais , Humanos , Úlceras Orais/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Qualidade de Vida , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Estresse Oxidativo
11.
Int J Biol Macromol ; 260(Pt 1): 129447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232889

RESUMO

The phase separation behavior of mixed solution of caseinate (Cas) and alginate (Alg) was investigated. Lactobacillus plantarum FZU3013 was encapsulated using 4 % Cas/1 % Alg gel beads with a phase-separated structure. The bacteria were predominantly distributed in the Alg-rich continuous phase. The use of 4 % Cas/1 % Alg beads resulted in higher encapsulation efficiency for L. plantarum FZU3013 compared to 1 % Alg beads. After 5 weeks of storage at 4 °C, the viable count in 4 % Cas/1 % Alg beads was 8.3 log CFU/g, which was 1.1 log CFU/g higher than that of the 1 % Alg beads. When 1 % Alg beads of the smallest size were subjected to in vitro digestion, no viable bacteria could be detected at the end of the digestion, whereas the 4 % Cas/1 % Alg beads of the smallest size had a viable count of 3.9 log CFU/g. When the size of the 4 % Cas/1 % Alg beads was increased to 1000 µm, the viable count was 7.0 log CFU/g after digestion. The results of infrared spectroscopy and zeta potential indicated that hydrogen bonding and electrostatic interactions between caseinate and alginate reinforced the structure of the gel beads and improved the protection for L. plantarum FZU 3013.


Assuntos
Lactobacillus plantarum , Probióticos , Alginatos/química
12.
Chemosphere ; 355: 141811, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554859

RESUMO

WO3 nanorods and xWO3@TiO2 (WO3/TiO2 mass ratio (x) = 1-5) photocatalysts were synthesized using the hydrothermal and sol-gel methods, respectively. The photocatalytic activities of xWO3@TiO2 for NH3 oxidation first increased and then decreased with a rise in TiO2 content. Among them, the heterostructured 3WO3@TiO2 photocatalyst showed the highest NH3 conversion (58 %) under the simulated sunlight irradiation, which was about two times higher than those of WO3 and TiO2. Furthermore, the smallest amounts of by-products (i.e., NO and NO2) were produced over 3WO3@TiO2. The enhancement in photocatalytic performance (i.e., NH3 conversion and N2 selectivity) of 3WO3@TiO2 was mainly attributed to the formed interfacial electric field between WO3 and TiO2, which promoted efficient separation and transfer of photogenerated charge carriers. Based on the results of reactive species trapping and active radical detection, photocatalytic oxidation of NH3 over 3WO3@TiO2 was governed by the photogenerated holes and superoxide radicals. This work combines two strategies of morphological regulation and interfacial electric field construction to simultaneously improve light utilization and photogenerated charge separation efficiency, which promotes the development of full-spectrum photocatalysts for the removal of ammonia.


Assuntos
Amônia , Titânio , Titânio/química , Oxirredução , Luz Solar
13.
Fitoterapia ; 175: 105940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565382

RESUMO

This study aims to clarify the specific anti-fatigue components of Schizophyllum commune (S.commune) and analyze its potential anti-fatigue mechanism. The main anti-fatigue active ingredient of S.commune was locked in n-butanol extract (SPE-n) by activity evaluation. Twelve compounds were identified by high performance liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS). The anti-fatigue effect of morusin is the most predominant among these 12 ingredients. The determination of biochemical indices showed that morusin could increase liver glycogen reserves, improve the activity of antioxidant enzymes in liver, and reduce reactive oxygen species (ROS) content in muscle tissue, thereby reducing myocyte damage. Further studies revealed that morusin could reduce the level of oxidative stress by activating Nrf2/HO-1 pathway, thus alleviating the fatigue of mice caused by exhaustive exercise. The current findings provide a theoretical basis for the development of natural anti-fatigue functional food.


Assuntos
Fadiga , Schizophyllum , Animais , Camundongos , Fadiga/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Heme Oxigenase-1/metabolismo , Músculo Esquelético , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Espectrometria de Massas em Tandem , Proteínas de Membrana , Animais não Endogâmicos
14.
Pharmaceutics ; 15(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36839710

RESUMO

Mitochondria are involved in various stages of cancer cell diffusion and metastasis. Therefore, targeting tumor mitochondria with antineoplastic medicines to cause mitochondria to initiate apoptosis may be an effective strategy for cancer therapy. Here, in order to enhance the anti-tumor efficacy of the antineoplastic agent hydroxycamptothecin (HCPT), the mitochondrial targeting ligand 4-(carboxybutyl) triphenylphosphine bromide (TPP) was attached to HCPT by an ester linkage. The resultant TPP-HCPT (TH) conjugate could self-assemble into nano-aggregates, with a mean particle size of 203.2 nm and a polydispersity index (PDI) value of 0.312. The TH conjugate could also co-assembly with mPEG3000-PLGA5000 into nanoparticles (TH-NPs), with a mean diameter of 86.41 nm, a PDI value of 0.256 and a zeta potential of -0.125 mV. In contrast to HCPT injections, TH aggregates displayed enhanced cellular uptake, mitochondria-targetability and cytotoxicity against 4T1 cells, while TH-NPs showed even better improvement than TH aggregates. In the in vivo study, TH aggregates displayed higher anti-tumor efficacy in 4T1 tumor-bearing mice than HCPT injections (tumor inhibition rate, 55.71% vs. 69.17%), and TH-NPs displayed more superior anti-tumor effects (tumor inhibition rate, 80.02%). In conclusion, our research demonstrated that the TPP-HCPT conjugate and its nano-formulations, including TH aggregates and TH-NPs, may be a promising mitochondria-targeting anticancer medicine for cancer therapy. As far as we know, this is the first report in which TPP and HCPT have been conjugated directly for this aim.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36833857

RESUMO

Potentially toxic element (PTE) contamination in soils has serious impacts on ecosystems. However, there is no consensus in the field of assessment and monitoring of contaminated sites in China. In this paper, a risk assessment and pollution monitoring method for PTEs was proposed and applied to a mining site containing As, Cd, Sb, Pb, Hg, Ni, Cr, V, Zn, Tl, and Cu. The comprehensive scoring method and analytical hierarchical process were used to screen the priority PTEs for monitoring. The potential ecological risk index method was used to calculate the risk index of monitoring point. The spatial distribution characteristics were determined using semi-variance analysis. The spatial distribution of PTEs was predicted using ordinary kriging (OK) and radial basis function (RBF). The results showed that the spatial distribution of As, Pd, and Cd are mainly influenced by natural factors, while Sb and RI are influenced by both natural and human factors. OK has higher spatial prediction accuracy for Sb and Pb, and RBF has higher prediction accuracy for As, Cd, and RI. The areas with high ecological risk and above are mainly distributed on both sides of the creek and road. The optimized long-term monitoring sites can achieve the monitoring of multiple PTEs.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Solo , Metais Pesados/análise , Ecossistema , Monitoramento Ambiental/métodos , Cádmio , Chumbo , Poluentes do Solo/análise , Medição de Risco , China
16.
Int J Pharm X ; 6: 100204, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37560487

RESUMO

In this paper, the material library approach was used to uncover the pattern of tabletability change and related risk for tablet formulation design under the roll compaction and dry granulation (RCDG) process. 31 materials were fully characterized using 18 physical parameters and 9 compression behavior classification system (CBCS) parameters. Then, each material was dry granulated and sieved into small granules (125-250 µm) and large granules (630-850 µm), respectively. The compression behavior of granules was characterized by the CBCS descriptors, and were compared with that of ungranulated powders. The relative change of tabletability (CoTr) index was used to establish the tabletability change classification system (TCCS), and all materials were classified into three types, i.e. loss of tabletability (LoT, Type I), unchanged tabletability (Type II) and increase of tabletability (Type III). Results showed that approximately 65% of materials presented LoT, and as the granules size increased, 84% of the materials exhibited LoT. A risk decision tree was innovatively proposed by joint application of the CBCS tabletability categories and the TCCS tabletability change types. It was found that the LoT posed little risk to the tensile strength of the final tablet, when Category 1 or 2A materials, or Category 2B materials with Type II or Type III change of tabletability were used. Formulation risk happened to Category 2C or 3 materials, or Category 2B materials with Type I change of tabletability, particularly when high proportions of these materials were involved in tablet formulation. In addition, the risk assessment results were verified in the material property design space developed from a latent variable model in prediction of tablet tensile strength. Overall, results suggested that a combinational use of CBCS and TCCS could aid the decision making in selecting materials for tablet formulation design via RCDG.

17.
Huan Jing Ke Xue ; 44(1): 189-197, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635807

RESUMO

The Modaomen and Hongwan waterways are the main estuaries of the Pearl River system. Affected by tides, the Fenghuangshan Reservoir, Dajingshan Reservoir, and Zhuxiandong Reservoir, which are subject to water transfer along the river line, are important drinking water sources in the central part of Zhuhai City in the Guangdong-Hong Kong-Macao Greater Bay Area. Eight heavy metals in 15 sampling points in the reservoir area were monitored in the two seasons (August and October) of 2019. The environmental quality of the surface sediments of the three water supply reservoirs was surveyed using correlation analysis, geoaccumulation index evaluation, ecological risk assessment, and traceability analysis in the present study. The results showed that the order of the average content of the eight heavy metals in the three reservoirs was as follows: Zhuxiandong Reservoir>Dajingshan Reservoir>Fenghuangshan Reservoir. The contents of Hg, Zn, and Pb in Fenghuangshan Reservoir; Hg, As, Mn, Ni, Cu, Zn, and Pb in Dajingshan Reservoir; and Zhuxiandong Reservoir exceeded the background values of soil heavy metals in Guangdong province by 1.88-2.75, 1.05-2.32, and 1.69-6.45 times. Except for As in Fenghuangshan Reservoir, As and Cu in Dajingshan Reservoir and Cr and Ni in Zhuxiandong Reservoir, the other heavy metals elements showed the content characteristics of dry season>wet season. The evaluation results of the geoaccumulation index method indicated that the pollution degree of the three reservoirs was in the order of: Zhuxiandong Reservoir>Dajingshan Reservoir>Fenghuangshan Reservoir. Among them, the Fenghuangshan Reservoir and the Dajingshan Reservoir were only slightly polluted by Hg, Zn, and Pb elements, and the Zhuxiandong Reservoir as a whole was slightly or moderately polluted. The evaluation results of the potential ecological risk index showed that the overall ecological risk of Fenghuangshan Reservoir and Dajingshan Reservoir was low, and Zhuxiandong Reservoir was at a medium ecological risk level. Hg was the main ecological risk-contributing factor of the three reservoirs, with contribution rates of 78.8%, 64.4%, and 51.0%, respectively.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Chumbo/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Metais Pesados/análise , Mercúrio/análise , Abastecimento de Água , Rios , Medição de Risco , China
18.
J Hazard Mater ; 450: 131003, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857822

RESUMO

Heavy metals (HMs) in drinking water have drawn worldwide attention due to their risks to public health; however, a systematic assessment of the occurrence of HMs in drinking water treatment plants (DWTPs) at a large geographical scale across China and the removal efficiency, human health risks, and the correlation with environmental factors have yet to be established. Therefore, this study characterised the occurrence patterns of nine conventional dissolved HMs in the influent and effluent water samples from 146 typical DWTPs in seven major river basins across China (which consist of the Yangtze River, the Yellow River, the Songhua River, the Pearl River, the Huaihe River, the Liaohe River and the Haihe River) for the first time and removal efficiency, probabilistic health risks, and the correlation with water quality. According to the findings, a total of eight HMs (beryllium (Be), antimony (Sb), barium (Ba), molybdenum (Mo), nickel (Ni), vanadium (V), cobalt (Co) and titanium (Ti)) were detected, with detection frequencies in influent and effluent water ranging from 2.90 (Mo) to 99.30% (Ba) and 1.40 (Ti) to 97.90% (Ba), respectively. The average concentration range was 0.41 (Be)- 77.36 (Sb) µg/L. Among them, Sb (exceeding standard rate 8%), Ba (2.89%), Ni (21.43%), and V (1.33%) were exceeded the national standard (GB5749-2022). By combining Spearman's results and redundancy analysis, our results revealed a close correlation among pH, turbidity (TURB), potassium permanganate index (CODMn), and total nitrogen (TN) along with the concentration and composition of HMs. In addition, the concentration of HMs in finished water was strongly affected by the concentration of HMs in raw water, as evidenced by the fact that HMs in surface water poses a risk to the quality of finished water. Metal concentration was the primary factor in assessing the health risk of a single metal, and the carcinogenic risk of Ba, Mo, Ni, and Sb should be paid attention to. In DWTPs, the removal efficiencies of various HMs also vary greatly, with an average removal rate ranging from 16.30% to 95.64%. In summary, our findings provide insights into the water quality and health risks caused by HMs in drinking water.


Assuntos
Água Potável , Metais Pesados , Poluentes Químicos da Água , Humanos , Água Potável/análise , Monitoramento Ambiental/métodos , Medição de Risco , Metais Pesados/análise , China , Níquel/análise , Molibdênio , Bário , Titânio , Poluentes Químicos da Água/análise , Rios/química , Sedimentos Geológicos
19.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1218-1224, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37236938

RESUMO

We assessed the seasonal dynamics of N2O emission in ant nests soils in secondary tropical Millettia leptobotrya forest of Xishuangbanna by using the static chamber-gas chromatography method, and determined the lin-kages between ant-mediated changes in soil properties (e.g., carbon pool, nitrogen pool, and temperature and humidity) and N2O emission. The results showed that ant nesting significantly affected soil N2O emission. The ave-rage soil N2O emission (0.67 mg·m-2·h-1) in ant nests was 40.2% higher than that in the control (0.48 mg·m-2·h-1). N2O emission in ant nests and the control showed substantial seasonal variation, with higher rate in June (0.90 and 0.83 mg·m-2·h-1, respectively) than that in March (0.38 and 0.19 mg·m-2·h-1, respectively). Ant nesting significantly increased the values (7.1%-74.1%) of moisture, temperature, organic carbon, total nitrogen, hydrolytic nitrogen, ammonium nitrogen, nitrate nitrogen, and microbial biomass carbon, but decreased pH (9.9%) compared with the control. Results of structural equation model showed that soil N2O emission was promoted by soil C and N pool, temperature, and humidity, but was inhibited by soil pH. The explained extents of soil nitrogen pool, carbon pool, temperature and humidity, and pH for N2O emission changes were 37.2%, 27.7%, 22.9% and 9.4%, respectively. Therefore, ant nesting regulated N2O emission dynamics by changing nitrification and denitrification substrates (e.g., nitrate and ammoniacal nitrogen), carbon pool, and micro-habitat (temperature and moisture) of soil in the secondary tropical forest.


Assuntos
Formigas , Solo , Animais , Solo/química , Nitratos/análise , Estações do Ano , Florestas , Nitrogênio/análise , Carbono , Óxido Nitroso/análise
20.
Pharmaceutics ; 14(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893789

RESUMO

Cannabidiol (CBD), a nonpsychoactive major component derived from Cannabis sativa, widely used in neurodegenerative diseases, has now been proven to have growth inhibitory effects on many tumor cell lines, including breast tumors. Meanwhile CBD can effectively alleviate cancer-associated pain, anxiety, and depression, especially tumor cachexia, thus it is very promising as an anti-tumor drug with unique advantages. 20(S)-Protopanaxadiol (PPD) derived from the best-known tonic Chinese herbal medicine Ginseng was designed to be co-loaded with CBD into liposomes to examine their synergistic tumor-inhibitory effect. The CBD-PPD co-loading liposomes (CP-liposomes) presented a mean particle size of 138.8 nm. Further glycosyl-modified CP-liposomes (GMCP-liposomes) were prepared by the incorporation of n-Dodecyl ß-D-maltoside (Mal) into the liposomal bilayer with glucose residue anchored on the surface to act as a ligand targeting the GLUT1 receptor highly expressed on tumor cells. In vivo studies on murine breast tumor (4T1 cells)-bearing BALB/c mice demonstrated good dose dependent anti-tumor efficacy of CP-liposomes. A high tumor inhibition rate (TIR) of 82.2% was achieved with good tolerance. However, glycosylation modification failed to significantly enhance TIR of CP-liposomes. In summary, combined therapy with PPD proved to be a promising strategy for CBD to be developed into a novel antitumor drug, with characteristics of effectiveness, good tolerance, and the potential to overcome tumor cachexia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA