RESUMO
MOTIVATION: Accurately detecting pathogenic microorganisms requires effective primers and probe designs. Literature-derived primers are a valuable resource as they have been tested and proven effective in previous research. However, manually mining primers from published texts is time-consuming and limited in species scop. RESULTS: To address these challenges, we have developed MiPRIME, a real-time Microbial Primer Mining platform for primer/probe sequences extraction of pathogenic microorganisms with three highlights: (i) comprehensive integration. Covering >40 million articles and 548 942 organisms, the platform enables high-frequency microbial gene discovery from a global perspective, facilitating user-defined primer design and advancing microbial research. (ii) Using a BioBERT-based text mining model with 98.02% accuracy, greatly reducing information processing time. (iii) Using a primer ranking score, PRscore, for intelligent recommendation of species-specific primers. Overall, MiPRIME is a practical tool for primer mining in the pan-microbial field, saving time and cost of trial-and-error experiments. AVAILABILITY AND IMPLEMENTATION: The web is available at {{https://www.ai-bt.com}}.
Assuntos
Primers do DNA , Mineração de Dados , Mineração de Dados/métodos , Software , Bactérias/genética , Bactérias/classificaçãoRESUMO
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a significant global health issue, suspected to elevate the risk for various cancers. This study sought to discern whether COPD serves as a risk marker or a causative factor for prevalent cancers. METHODS: We employed univariable MR (UVMR) analyses to investigate the causal relationship between COPD and the top ten common cancers. Sensitivity analyses were performed to validate the main findings. Multivariable MR (MVMR) and two-step MR analyses were also conducted. False-discovery-rate (FDR) was used to correct multiple testing bias. RESULTS: The UVMR analysis demonstrated notable associations between COPD and lung cancer (odds ratio [OR] = 1.42, 95%CI 1.15-1.77, FDR = 6.37 × 10-3). This relationship extends to lung cancer subtypes such as squamous cell carcinoma (LUSC), adenocarcinoma (LUAD), and small cell lung cancer (SCLC). A tentative link was also identified between COPD and bladder cancer (OR = 1.53, 95%CI 1.03-2.28, FDR = 0.125). No significant associations were found between COPD and other types of cancer. The MVMR analysis that adjusted for smoking, alcohol drinking, and body mass index did not identify any significant causal relationships between COPD and either lung or bladder cancer. However, the two-step MR analysis indicates that COPD mediated 19.2% (95% CI 12.7-26.1%), 36.1% (24.9-33.2%), 35.9% (25.7-34.9%), and 35.5% (26.2-34.8%) of the association between smoking and overall lung cancer, as well as LUAD, LUSC, and SCLC, respectively. CONCLUSIONS: COPD appears to act more as a risk marker than a direct cause of prevalent cancers. Importantly, it partially mediates the connection between smoking and lung cancer, underscoring its role in lung cancer prevention strategies.
Assuntos
Neoplasias Pulmonares , Análise da Randomização Mendeliana , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/etiologia , Fatores de Risco , Neoplasias/epidemiologia , Neoplasias/genética , Fumar/efeitos adversos , Fumar/epidemiologia , Masculino , Razão de ChancesRESUMO
A novel liquid-crystal compound of more than 99.95% purity with high performance (such as a high clearing point, large dielectric anisotropy, high optical anisotropy, low viscosity, and large elastic constants) was designed and synthesized according to the fringe-field switching thin-film-transistor-liquid-crystal display requirements (FFS-TFT). Then, a mixed liquid-crystal material suitable for an FFS-TFT display was developed by mixing this compound with other reported compounds, developing a product whose quality was that of the highest level of similar foreign products and which fully met the customer's use requirements (BOE), and thus able to completely replace similar imported materials.
Assuntos
Cristais Líquidos , AnisotropiaRESUMO
With the switchability between transparent and light-scattering states, polymer-dispersed liquid crystals (PDLC) are widely used as smart windows, flexible display devices, projectors, and other devices. In outdoor applications, in addition to excellent electro-optical properties, there is also a high demand for film stability. In this work, a PDLC film with high mechanical strength and structural stability is prepared that can maintain stability at 80 °C for 2000 h. By choosing liquid crystals with a wide temperature range, adopting acrylate polymer monomers containing hydroxyl groups, and adjusting the polymer content, the PDLC film can work well from -20 °C to 80 °C. On this basis, the effects of the introduction of rigid monomers on the mechanical properties and electro-optical properties of PDLC films are investigated.
Assuntos
Cristais Líquidos , PolímerosRESUMO
BACKGROUND: In this study, we established a chronic obstructive pulmonary disease (COPD) model by stimulating mice with cigarette smoke, and observed the effects of dendritic cells (DCs) overexpressing SOCS1 on Th17, Treg and other related cytokines in peripheral blood, bronchoalveolar lavage fluid and lung tissues of COPD mice. METHODS: After successfully transfecting DCs with overexpressing SOCS1 (DC-SOCS1), the mice were injected with DC-SOCS1 (1 × 106), DC-SOCS1 (2 × 106) and immature DCs (1 × 106) via tail vein on days 1 and 7 of COPD fumigation modeling. After day 28 of modeling, the peripheral blood, BALF and lung tissue samples were extracted from the mice, and the changes of DCs, Th17 and Treg cells and related cytokines were detected by immunohistochemistry, immunofluorescence, HE staining, flow cytometry and ELISA. RESULTS: The results showed that DC-SOCS1 was able to reduce the secretion of pro-inflammatory factors and increase the anti-inflammatory factors in the COPD mice, and the effect of high concentration (2 × 106 DC-SOCS1) was better than low concentration (1 × 106 DC-SOCS1). Moreover, the intervention effect was significant on day 1 compared with day 7. In the mice injected with DC-SOCS1, the expression of CD83, IL-4, Foxp3, and CCR6 was increased on day 1 than those on day 7, while IL-17 and IFN-γ was decreased. CONCLUSIONS: Intervention of COPD mice with high concentrations of DCs-SOCS1 reduced pro-inflammatory factor secretion and attenuated the inflammatory response in COPD. Trial registration Not applicable.
Assuntos
Citocinas , Células Dendríticas , Doença Pulmonar Obstrutiva Crônica , Proteína 1 Supressora da Sinalização de Citocina , Linfócitos T Reguladores , Células Th17 , Animais , Citocinas/imunologia , Células Dendríticas/imunologia , Camundongos , Doença Pulmonar Obstrutiva Crônica/imunologia , Proteína 1 Supressora da Sinalização de Citocina/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologiaRESUMO
Design and fabrication of advanced security label showing superior performance in data encryption has attracted tremendous scientific interests. Especially, multifunctional optical labels capable of storing distinct information in different modes are highly demanded. Here, a fluorescent cholesteric liquid crystalline network (CLCN) film with programmable visible patterns and photo-rewritable fluorescent patterns was designed and prepared. The visible patterns were fixed by helical network and the colors of visible patterns were tunable by changing relative humidity (RH). The fluorescent patterns originated from dynamic isomerization of fluorescent hydrazones, exhibiting highly thermal stability and switching-ability controlled by light. The orthogonal construction of visible and fluorescent pattern enabled the novel CLCN to encrypt distinct information in reflective mode and in emissive mode, indicating its potential in anti-counterfeiting and information encryptions.
RESUMO
Spiropyran-based materials (SPBMs) can give responses to the stimulations induced by the light, heat, force, or pH, which have been used as triggers for many smart materials. Here, a cross-linkable SPBM containing mesogenic-units is synthesized, which is pale-colored, non-photoluminescent and non-mesogenic at a spiro form, but dark-colored, photoluminescent, and mesogenic at a merocyanine form. Moreover, the dynamic interconversion behavior of the form in the different chemical environments are distinct. Liquid crystalline polymers (LCPs) containing the SPBMs cross-linked via visible light, own a photoswitchable glass transition temperature (Tg ) and retain the switchable property; however, the SPBMs cross-linked via UV light will be locked at the MC state, because the molecular movement was frozen at the room temperature lower than the given Tg of the LCP. Thus, programmable chromism and photoluminescence based on the tunable Tg can be endowed to the functional materials prepared from the SPBMs.
RESUMO
The development of the economy has increased the demand for anti-counterfeiting technologies, and with the traditional ones becoming known to the public, new and more effective ones are needed. In this study, a series of liquid crystal mixtures containing side-chain liquid crystal polymers and small-molecular-weight liquid crystals (LCs) were designed and prepared. The phase transition behavior and self-assembling structures of the LC mixtures were investigated by a combination of differential scanning calorimetry, polarized optical microscopy, and small-angle X-ray diffraction. The optical properties of the mixture film were characterized with a UV/VIS/IR spectrum study. The results reveal that the obtained film exhibited different optical modes between transparent, scattering, and selective reflection under finger-temperature control. Therefore, by the introduction of a coexisting thermal- or optical-polymer-dispersed network, a liquid crystal composite film with an integration of apparent optical switching modes and enhanced strength and toughness was successfully demonstrated. This research provides a versatile strategy for the design and preparation of liquid crystal anti-counterfeiting materials for practical use. In this study, a prototype finger-temperature-detecting anti-counterfeiting label was prepared, and its temperature-response property was demonstrated.
Assuntos
Cristais Líquidos/química , Membranas Artificiais , Temperatura , Microscopia , Transição de Fase , Polímeros , Análise EspectralRESUMO
Polymer dispersed liquid crystals (PDLCs) have kindled a spark of interest because of their unique characteristic of electrically controlled switching. However, some issues including high operating voltage, low contrast ratio and poor mechanical properties are hindering their practical applications. To overcome these drawbacks, some measures were taken such as molecular structure optimization of the monomers and liquid crystals, modification of PDLC and doping of nanoparticles and dyes. This review aims at detailing the recent advances in the process, preparations and applications of PDLCs over the past six years.
Assuntos
Cristais Líquidos/química , Polímeros/química , Carbono , Corantes/química , Cristais Líquidos/ultraestrutura , Membranas Artificiais , Nanoestruturas , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Fosfatidiletanolaminas/química , Polimerização , Relação Estrutura-AtividadeRESUMO
Thiols are prone to react with a multitude of various functional groups in high yields, which has been widely used for surface- and particle-patterning, bioorganic synthesis, polymer modification, imprint nanolithography, the fabrication of optical components, hydrogel synthesis, and the curing of hard protective coatings. In this work, a chiral thiol with a high helical twisting power was synthesized through a novel synthetic route with high selectivity, yield, and cost-effectiveness. It was then used to fabricate a liquid-crystal composite film with ultra-wide broadband reflection via thiol click chemistry. Cholesteric liquid-crystal materials with broadband reflection have many potential applications for broadband polarizers, polarizer-free displays, organic optical data storage media, smart switchable reflective windows, and continuous waveband laser protection.
RESUMO
Controllable assembly of molecular motors on solid surfaces is a fundamental issue for providing them to perform physical tasks. However, it can hardly be achieved by most previous methods due to their inherent limitations. Here, a general strategy is designed for the reprogrammable assembly of molecular motors on solid surfaces based on dynamic bonds. In this method, molecular motors with disulfide bonds can be remotely, reversibly, and precisely attached to solid surfaces with disulfide bonds, regardless of their chemical composition and microstructure. More importantly, it not only allows encoding geometric information referring to a pattern of molecular motors, but also enables erasing and re-encoding of geometric information via hemolytic photocleavage and recombination of disulfide bonds. Thus, solid surfaces can be regarded as "computer hardware", where molecular motors can be reformatted and reprogramed as geometric information.
RESUMO
In this study, a polymer dispersed cholesteric liquid crystal (PDChLC) film obtained via a one-step fabrication technique based on photopolymerization of a thiol-acrylate reaction system was prepared and characterized for the first time. The effects of the chiral dopant, the influence of thiol monomer functionality and content on the morphology and subsequent performance of the PDChLC films were systematically investigated. It was demonstrated that the addition of a small amount of chiral dopant slightly increased the driving voltage, but decreased the off-state transmittance significantly. Furthermore, scanning electron micrographs (SEM) shown that the liquid crystal (LC) droplet size decreased at first and then increased with the increasing amount of thiol monomer functionality, while increasing the thiol content increased the LC droplet size. Correspondingly, the electro-optical switching behavior was directly dependent on LC droplet size. By tuning the raw material composition, PDChLC film with optimized electro-optical performance was prepared.
Assuntos
Acrilatos/química , Cristais Líquidos/química , Polímeros/química , Compostos de Sulfidrila/química , Eletricidade , Luz , Microscopia Eletrônica de Varredura , Estrutura Molecular , Fenômenos ÓpticosRESUMO
Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.
Assuntos
Acrilatos/química , Cristais Líquidos/química , Polímeros/química , Compostos de Sulfidrila/química , Óptica e Fotônica , Processos Fotoquímicos , Polimerização , Raios UltravioletaRESUMO
2,4-Dichlorophenol (2,4-DCP) is considered as an important pollutant because of its high toxicity and wide distribution in wastewaters. Innocuous remediation technologies have been studied for the removal of this pollutant. This study investigated the feasibility of using garlic roots as a plant system for the removal of 2,4-DCP. The optimal conditions for its removal were established based on orthogonal experiments (OA25 matrix). Significant factors that affect removal efficiency, arranged from high to low importance, include pH, reaction time, 2,4-DCP concentration, and H2O2 concentration. In addition, garlic roots could be re-used for as much as three consecutive cycles. The decrease in pH and the increase of Cl(-) ion content in the post-removal solutions indicated that 2,4-DCP dehalogenation occurred during transformation. Changes in the deposition pattern of lignin in roots exposed to 2,4-DCP suggested that several of the products deposited were lignin-type polymers. The acute toxicity test revealed that the post-removal solutions were less toxic than the parent solutions. Therefore, garlic roots have considerable potential to effectively and safely remove 2,4-DCP from wastewater.
Assuntos
Biodegradação Ambiental , Clorofenóis/metabolismo , Alho/metabolismo , Raízes de Plantas/metabolismo , Poluentes Químicos da Água/metabolismo , Biotransformação , Lignina/metabolismo , Soluções/metabolismoRESUMO
Platycodonis Radix (Jiegeng in Chinese) is a well-known traditional Chinese medicine used for both medicinal and culinary purposes. Its historical use as an antitussive and expectorant has been extensively documented. Researchers, to date, have identified 219 chemical constituents in Platycodon grandiflorum (Jacq.) A. DC, encompassing 89 saponins, 11 flavonoids, 21 polysaccharides, 14 phenolic acids, six polyacetylenes, five sterols, 34 fatty acids, 17 amino acids, and 22 trace elements. Jiegeng exhibits diverse pharmacological effects, including antitussive and anti-phlegm properties, anti-cancer activity, anti-inflammatory effects, immune regulation, antioxidant properties, anti-obesity, and antidiabetic effects. Additionally, Jiegeng shows potential in protecting the heart and liver. Beyond its medicinal benefits, Jiegeng is highly esteemed in culinary applications, and its global demand is on the rise. Its utilization has expanded beyond medicine and food to encompass daily necessities, cosmetics, agricultural supplies, and other fields. Currently, there are 18 272 patents related to P. grandiflorum. This comprehensive review summarizes the latest research published over the past 20 years, providing a robust foundation for further exploration of the medicinal and health benefits of P. grandiflorum.
RESUMO
Smart windows with radiative heat management capability using the sun and outer space as zero-energy thermodynamic resources have gained prominence, demonstrating a minimum carbon footprint. However, realizing on-demand thermal management throughout all seasons while reducing fossil energy consumption remains a formidable challenge. Herein, an energy-efficient smart window that enables actively tunable passive radiative cooling (PRC) and multimode heating regulation is demonstrated by integrating the emission-enhanced polymer-dispersed liquid crystal (SiO2@PRC PDLC) film and a low-emission layer deposited with carbon nanotubes. Specifically, this device can achieve a temperature close to the chamber interior ambient under solar irradiance of 700 W m-2, as well as a temperature drop of 2.3 °C at sunlight of 500 W m-2, whose multistage PRC efficiency can be rapidly adjusted by a moderate voltage. Meanwhile, synchronous cooperation of passive radiative heating (PRH), solar heating (SH), and electric heating (EH) endows this smart window with the capability to handle complicated heating situations during cold weather. Energy simulation reveals the substantial superiority of this device in energy savings compared with single-layer SiO2@PRC PDLC, normal glass, and commercial low-E glass when applied in different climate zones. This work provides a feasible pathway for year-round thermal management, presenting a huge potential in energy-saving applications.
RESUMO
Based on the effectiveness, measurability, and traceability of the quality marker (Q-marker) theory of traditional Chinese medicine, the Q-marker of Lycii Cortex (LC) was preliminarily predicted and analyzed. A UPLC-Q-TOF-MS qualitative analysis method for LC samples was established. A total of 44 LC chemical components, 16 plasma prototype components, 25 urine prototype components, and 27 fecal prototype components were identified. At the same time, the "component-target-disease" network diagram was constructed by network pharmacology to predict the potential active components of LC. A UPLC-MS/MS quantitative analysis method was established to determine the contents of 11 components such as kukoamine A in 35 batches of LC from seven producing areas. Principal component analysis, orthogonal partial least squares discriminant analysis, and other mathematical analysis methods were used to screen the differential components. Based on the comprehensive consideration of the Q-marker traceability, transitivity, specificity, effectiveness, and measurability, kukoamine A and kukoamine B were preliminarily predicted as LC potential Q-markers, and the high-quality producing area was determined to be Chengcheng County, Weinan City, Shaanxi Province. The prediction analysis of the LC Q-marker provides a reference for the comprehensive control of the quality of LC medicinal materials and also lays a foundation for the research and exploration of the substance basis and mechanism of action of LC.
RESUMO
The development of an integrated material system capable of effectively organizing and combining multisource information, such as dynamic pigmentary, structural, and fluorescent colors, is significant and challenging. Achieving such programmable dynamic information storage can considerably enhance the diversity and security of information deliveries. Here, a polymer-stabilized cholesteric liquid crystal system with highly temperature-sensitive structural color and light-sensitive pigmentary and fluorescence colors is presented. The prepared cholesteric liquid crystals (clcs) can reversibly change their structural color from red to blue within variational 3 °C near room temperature, and exhibit a gradually adjustable fluorescence which can transform from blue to pink and finally to bright red. All this dynamic information is programmable and tailored, hundreds of thousands of (>540 000) pattern combinations can easily be achieved by optical writing with a "bagua" pattern photomask. Therefore, if the corresponding code combinations to the pattern are assigned particular meanings, encrypted transmission of information with very high security can be achieved by utilizing applicable information encoding tables and decryption rules.
RESUMO
Liquid crystalline network (LCN)-based soft actuators have opened up great opportunities to fabricate emerging and intriguing smart materials, serving as potential building blocks for intelligent soft robotics. Endowing LCN actuators with complex responsive behaviors to enhance their intelligence is both challenging and highly demanded. Herein, Donor-Acceptor Stenhouse Adducts (DASAs) molecules with rod-like mesogen and the polymerizable group are judiciously designed and synthesized, which is strong-colored at linear form and de-coloration at cyclic form after visible light. In the colored state, the DASA presents a striking photothermal effect that is capable of driving the motions of LCN film. Upon visible light irradiation, the DASA becomes colorless, making the diminishing photothermal effect. The light-gated switching of the photothermal effect renders the LCN films to be reconfigurable and perform off-equilibrium motions. The varying glass transition temperature of LCN matrix endowing tunable isomerization rates of DASAs and the equilibrium balance of photo- and thermal-isomerization at different temperatures in LCN-P-DASA film mainly guiding the off-equilibrium or stable motions, providing high adjustability of the novel visible light-driven LCN actuators. The multiply modulated LCN-P-DASA film holds great potential in constructing complex visible light-driven soft actuators based on the synergetic effect and interactions of photochemical and photothermal effects.
RESUMO
Diarrhea and constipation are common health concerns in children. Numerous studies have identified strong association between gut microbiota and digestive-related diseases. But little is known about the gut microbiota that simultaneously affects both diarrhea and constipation or their potential regulatory mechanisms. Stool samples from 618 children (66 diarrhea, 138 constipation, 414 healthy controls) aged 0-3 years were collected to investigate gut microbiota changes using 16S rRNA sequencing. Compared with healthy, children with diarrhea exhibited a significant decrease in microbial diversity, while those with constipation showed a marked increase (p < 0.05). Significantly, our results firstly Ruminococcus increased in constipation (p = 0.03) and decreased in diarrhea (p < 0.01) compared to healthy controls. Pathway analysis revealed that Ruminococcus highly involved in the regulation of five common pathways (membrane transport, nervous system, energy metabolism, signal transduction and endocrine system pathways) between diarrhea and constipation, suggesting a potential shared regulatory mechanism. Our finding firstly reveals one core microorganisms that may affect the steady balance of the gut in children with diarrhea or constipation, providing an important reference for potential diagnosis and treatment of constipation and diarrhea.