Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Bioorg Med Chem ; 100: 117631, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330848

RESUMO

Acute myeloid leukemia (AML) is the most common type of blood cancer and has been strongly correlated with the overexpression of Fms-like tyrosine kinase 3 (FLT3), a member of the class III receptor tyrosine kinase family. With the emergence of FLT3 internal tandem duplication alteration (ITD) and tyrosine kinase domain (TKD) mutations, the development of FLT3 small molecule inhibitors has become an effective medicinal chemistry strategy for AML. Herein, we have designed and synthesized two series of 1H-pyrrolo[2,3-b]pyridine derivatives CM1-CM24, as FLT3 inhibitors based on F14, which we previously reported, that can target the hydrophobic FLT3 back pocket. Among these derivates, CM5 showed significant inhibition of FLT3 and FLT3-ITD, with inhibitory percentages of 57.72 % and 53.77 % respectively at the concentration of 1 µΜ. Furthermore, CM5 demonstrated potent inhibition against FLT3-dependent human AML cell lines MOLM-13 and MV4-11 (both harboring FLT3-ITD mutant), with IC50 values of 0.75 µM and 0.64 µM respectively. In our cellular mechanistic studies, CM5 also effectively induces apoptosis by arresting cell cycle progression in the G0/G1 phase. In addition, the amide and urea linker function were discussed in detail based on computational simulations studies. CM5 will serve as a novel lead compound for further structural modification and development of FLT3 inhibitors specifically targeting AML with FLT3-ITD mutations.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Humanos , Apoptose , Linhagem Celular Tumoral , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Piridinas/farmacologia
2.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003718

RESUMO

Alcohol use accounts for a large variety of diseases, among which alcoholic liver injury (ALI) poses a serious threat to human health. In order to overcome the limitations of chemotherapeutic agents, some natural constituents, especially polysaccharides from edible medicinal plants (PEMPs), have been applied for the prevention and treatment of ALI. In this review, the protective effects of PEMPs on acute, subacute, subchronic, and chronic ALI are summarized. The pathogenesis of alcoholic liver injury is analyzed. The structure-activity relationship (SAR) and safety of PEMPs are discussed. In addition, the mechanism underlying the hepatoprotective activity of polysaccharides from edible medicinal plants is explored. PEMPs with hepatoprotective activities mainly belong to the families Orchidaceae, Solanaceae, and Liliaceae. The possible mechanisms of PEMPs include activating enzymes related to alcohol metabolism, attenuating damage from oxidative stress, regulating cytokines, inhibiting the apoptosis of hepatocytes, improving mitochondrial function, and regulating the gut microbiota. Strategies for further research into the practical application of PEMPs for ALI are proposed. Future studies on the mechanism of action of PEMPs will need to focus more on the utilization of multi-omics approaches, such as proteomics, epigenomics, and lipidomics.


Assuntos
Hepatopatias Alcoólicas , Plantas Medicinais , Humanos , Plantas Comestíveis , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/metabolismo
3.
Exp Eye Res ; 220: 109095, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490835

RESUMO

Diabetic retinopathy (DR) is a potentially blinding complication resulting from diabetes mellitus (DM). Retinal vascular endothelial cells (RMECs) dysfunction occupies an important position in the pathogenesis of DR, and mitochondrial disorders play a vital role in RMECs dysfunction. However, the detailed mechanisms underlying DR-induced mitochondrial disorders in RMECs remain elusive. In the present study, we used High glucose (HG)-induced RMECs in vitro and streptozotocin (STZ)-induced Sprague-Dawley rats in vivo to explore the related mechanisms. We found that HG-induced mitochondrial dysfunction via mitochondrial Dynamin-related protein 1(Drp1)-mediated mitochondrial fission. Drp1 inhibitor, Mdivi-1, rescued HG-induced mitochondrial dysfunction. Protein Kinase Cδ (PKCδ) could induce phosphorylation of Drp1, and we found that HG induced phosphorylation of PKCδ. PKCδ inhibitor (Go 6983) or PKCδ siRNA reversed HG-induced phosphorylation of Drp1 and further mitochondrial dysfunction. The above studies indicated that HG increases mitochondrial fission via promoting PKCδ/Drp1 signaling. Drp1 induces excessive mitochondrial fission and produces damaged mitochondrial, and mitophagy plays a key role in clearing damaged mitochondrial. Our study showed that HG suppressed mitophagy via inhibiting LC3B-II formation and p62 degradation. 3-MA (autophagy inhibitor) aggravated HG-induced RMECs damage, while rapamycin (autophagy agonist) rescued the above phenomenon. Further studies were identified that HG inhibited mitophagy by down-regulation of the PINK1/Parkin signaling pathway, and PINK1 siRNA aggravated HG-induced RMECs damage. Further in-depth study, we propose that Drp1 promotion of Hexokinase II (HK-II) separation from mitochondria, thus inhibiting HK-II-PINK1-mediated mitophagy. In vivo, we found that intraretinal microvascular abnormalities (IRMA), including retinal vascular leakage, acellular capillaries, and apoptosis were increased in STZ-induced DR rats, which were reversed by pretreatment with Mdivi-1 or Rapamycin. Altogether, our findings provide new insight into the mechanisms underlying the regulation of mitochondrial homeostasis and provide a potential treatment strategy for Diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Dinaminas , Mitocôndrias , Animais , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Dinaminas/antagonistas & inibidores , Dinaminas/metabolismo , Células Endoteliais/metabolismo , Homeostase , Mitocôndrias/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Sirolimo
4.
Pestic Biochem Physiol ; 184: 105133, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715027

RESUMO

The fall armyworm Spodoptera frugiperda (Smith) (FAA) is responsible for considerable losses in grain production, and chemical control is the most effective strategy. However, frequent insecticide application can lead to the development of resistance. In insects, cytochrome P450 plays a crucial role in insecticide metabolism. CYP6K2 is related to FAA resistance to chlorantraniliprole. However, the regulatory mechanism of CYP6K2 expression is poorly understood. In this study, a conserved target of isolated miRNA-190-5p was located in the 3' UTR of CYP6K2 in FAA. A luciferase reporter analysis showed that in FAA, miRNA-190-5p can combine with the 3'UTR of CYP6K2 to suppress its expression. Injected miRNA-190-5p agomir significantly reduced CYP6K2 abundance by 54.6% and reduced tolerance to chlorantraniliprole in FAA larvae, whereas injected miRNA-190-5p antagomir significantly increased CYP6K2 abundance by 1.77-fold and thus improved chlorantraniliprole tolerance in FAA larvae. These results provide a basis for further research on the posttranscriptional regulatory mechanism of CYP6K2 and will facilitate further study on the function of miRNAs in regulating tolerance to chlorantraniliprole in FAA.


Assuntos
Inseticidas , MicroRNAs , Animais , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva , MicroRNAs/genética , Spodoptera , ortoaminobenzoatos
5.
Pestic Biochem Physiol ; 187: 105218, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127060

RESUMO

The Chinese wheat aphid Sitobion miscanthi (CWA) is an important harmful pest in wheat fields. Imidacloprid plays a critical role in controlling pests with sucking mouthparts. However, imidacloprid-resistant pests have been observed after insecticide overuse. Point mutations and low expression levels of the nicotinic acetylcholine receptor ß1 (nAchRß1) subunit are the main imidacloprid-resistant mechanisms. However, the regulatory mechanism underlying nAChRß1 subunit expression is poorly understood. In this study, a target of miR-263b was isolated from the 5'UTR of the nAchRß1 subunit in the CWA. Low expression levels were found in the imidacloprid-resistant strain CWA. Luciferase reporter assays showed that miR-263b could combine with the 5'UTR of the nAChRß1 subunit and suppress its expression by binding to a site in the CWA. Aphids treated with the miR-263b agomir exhibited a significantly reduced abundance of the nAchRß1 subunit and increased imidacloprid resistance. In contrast, aphids treated with the miR-263b antagomir exhibited significantly increased nAchRß1 subunit abundance and decreased imidacloprid resistance. These results provide a basis for an improved understanding of the posttranscriptional regulatory mechanism of the nAChRß1 subunit and further elucidate the function of miRNAs in regulating susceptibility to imidacloprid in the CWA. These results provide a better understanding of the mechanisms of posttranscriptional regulation of nAChRß1 and will be helpful for further studies on the role of miRNAs in the regulation of nAChRß1 subunit resistance in homopteran pests.


Assuntos
Afídeos , Inseticidas , MicroRNAs , Receptores Nicotínicos , Regiões 5' não Traduzidas , Animais , Antagomirs , Afídeos/genética , Afídeos/metabolismo , Resistência a Inseticidas/genética , Inseticidas/farmacologia , MicroRNAs/genética , Neonicotinoides , Nitrocompostos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
6.
J Cell Biochem ; 122(3-4): 442-455, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33399227

RESUMO

As a posttranscriptional regulatory factor, microRNA (miRNA) plays an important role in the formation of myotubes. However, little is known about the mechanism of miRNA regulating myotube morphogenesis. Here, we aimed to characterize the function of miR-455-5p in myotube morphogenesis by inducing differentiation in C2C12 myoblasts containing murine Mylip fragments with the miR-455-5p target sequence. We found that miR-455-5p overexpression promoted the differentiation and hypertrophy of myotubes, while miR-455-5p inhibition led to the failure of myotube differentiation and formation of short myotubes. Furthermore, we demonstrated that miR-455-5p directly targeted the Mylip 3'-untranslated region, which plays a key role in monitoring myotube morphogenesis. Interestingly, the expression and function of Mylip were opposite to those of miR-455-5p during myogenesis. Our data uncovered novel miR-455-5p targets and established a functional link between Mylip and myotube morphogenesis. Understanding the involvement of Mylip in myotube morphogenesis provides insight into the function of the gene regulatory network.


Assuntos
Diferenciação Celular/fisiologia , MicroRNAs/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , MicroRNAs/genética , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia
7.
Environ Microbiol ; 23(4): 2054-2069, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314494

RESUMO

Indole is well known as an interspecies signalling molecule to modulate bacterial physiology; however, it is not clear how the indole signal is perceived and responded to by plant growth promoting rhizobacteria (PGPR) in the rhizosphere. Here, we demonstrated that indole enhanced the antibiotic tolerance of Pseudomonas fluorescens 2P24, a PGPR well known for its biocontrol capacity. Proteomic analysis revealed that indole influenced the expression of multiple genes including the emhABC operon encoding a major multidrug efflux pump. The expression of emhABC was regulated by a TetR-family transcription factor EmhR, which was demonstrated to be an indole-responsive regulator. Molecular dynamics simulation showed that indole allosterically affected the distance between the two DNA-recognizing helices within the EmhR dimer, leading to diminished EmhR-DNA interaction. It was further revealed the EmhR ortholog in Pseudomonas syringae was also responsible for indole-induced antibiotic tolerance, suggesting this EmhR-dependent, indole-induced antibiotic tolerance is likely to be conserved among Pseudomonas species. Taken together, our results elucidated the molecular mechanism of indole-induced antibiotic tolerance in Pseudomonas species and had important implications on how rhizobacteria sense and respond to indole in the rhizosphere.


Assuntos
Pseudomonas fluorescens , Antibacterianos/farmacologia , Indóis , Proteômica , Pseudomonas , Pseudomonas fluorescens/genética
8.
FASEB J ; 34(3): 4189-4203, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31957105

RESUMO

Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. Abnormal energy metabolism in microvascular endothelium is involved in the progression of diabetic retinopathy. Bile Acid G-Protein-Coupled Membrane Receptor (TGR5) has emerged as a novel regulator of metabolic disorders. However, the role of TGR5 in diabetes mellitus-induced microvascular dysfunction in retinas is largely unknown. Herein, enzyme-linked immunosorbent assay was used for analyzing bile acid (BA) profiles in diabetic rat retinas and retinal microvascular endothelial cells (RMECs) cultured in high glucose medium. The effects of TGR5 agonist on streptozotocin (STZ)-induced diabetic retinopathy were evaluated by HE staining, TUNEL staining, retinal trypsin digestion, and vascular permeability assay. A pharmacological inhibitor of RhoA was used to study the role of TGR5 on the regulation of Rho/Rho-associated coiled-coil containing protein kinase (ROCK) and western blot, immunofluorescence and siRNA silencing were performed to study the related signaling pathways. Here we show that bile acids were downregulated during DR progression in the diabetic rat retinas and RMECs cultured in high glucose medium. The TGR5 agonist obviously ameliorated diabetes-induced retinal microvascular dysfunction in vivo, and inhibited the effect of TNF-α on endothelial cell proliferation, migration, and permeability in vitro. In contrast, knockdown of TGR5 by siRNA aggravated TNF-α-induced actin polymerization and endothelial permeability. Mechanistically, the effects of TGR5 on the improvement of endothelial function was due to its regulatory role on the ROCK signaling pathway. An inhibitor of RhoA significantly reversed the loss of tight junction protein under TNF-α stimulation. Taken together, our findings suggest that insufficient BA signaling plays an important pathogenic role in the development of DR. Upregulation or activation of TGR5 may inhibit RhoA/ROCK-dependent actin remodeling and represent an important therapeutic intervention for DR.


Assuntos
Retinopatia Diabética/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Western Blotting , Linhagem Celular , Retinopatia Diabética/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Retina/efeitos dos fármacos , Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/ética , Quinases Associadas a rho/genética , Proteína rhoA de Ligação ao GTP/genética
9.
Environ Microbiol ; 22(12): 5073-5089, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32363709

RESUMO

In the well-known legume-rhizobia symbiosis, flavonoids released by legume roots induce expression of the Nod factors and trigger early plant responses involved in root nodulation. However, it remains largely unknown how the plant-derived flavonoids influence the physiology of non-symbiotic beneficial rhizobacteria. In this work, we demonstrated that the flavonoids apigenin and/or phloretin enhanced the swarming motility and production of cellulose and curli in Pseudomonas fluorescens 2P24, both traits of which are essential for root colonization. Using a label-free quantitative proteomics approach, we showed that apigenin and phloretin significantly reduced the biosynthesis of the antifungal metabolite 2,4-DAPG and further identified a novel flavonoid-sensing TetR regulator PhlH, which was shown to modulate 2,4-DAPG production by regulating the expression of 2,4-DAPG hydrolase PhlG. Although having similar structures, apigenin and phloretin could also influence different physiological characteristics of P. fluorescens 2P24, with apigenin decreasing the biofilm formation and phloretin inducing expression of proteins involved in the denitrification and arginine fermentation processes. Taken together, our results suggest that plant-derived flavonoids could be sensed by the TetR regulator PhlH in P. fluorescens 2P24 and acts as important signalling molecules that strengthen mutually beneficial interactions between plants and non-symbiotic beneficial rhizobacteria.


Assuntos
Antifúngicos/metabolismo , Flavonoides/farmacologia , Floroglucinol/análogos & derivados , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Locomoção/genética , Floroglucinol/metabolismo , Raízes de Plantas/química , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Environ Microbiol ; 21(5): 1740-1756, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30680880

RESUMO

The mqsRA operon encodes a toxin-antitoxin pair that was characterized to participate in biofilm and persister cell formation in Escherichia coli. Notably, the antitoxin MqsA possesses a C-terminal DNA-binding domain that recognizes the [5'-AACCT(N)2-4 AGGTT-3'] motif and acts as a transcriptional regulator controlling multiple genes including the general stress response regulator RpoS. However, it is unknown how the transcriptional circuits of MqsA homologues have changed in bacteria over evolutionary time. Here, we found mqsA in Pseudomonas fluorescens (PfmqsA) is acquired through horizontal gene transfer and binds to a slightly different motif [5'-TACCCT(N)3 AGGGTA-3'], which exists upstream of the PfmqsRA operon. Interestingly, an adjacent GntR-type transcriptional regulator, which was termed AgtR, is under negative control of PfMqsA. It was further demonstrated that PfMqsA reduces production of biofilm components through AgtR, which directly regulates the pga and fap operons involved in the synthesis of extracellular polymeric substances. Moreover, through quantitative proteomics analysis, we showed AgtR is a highly pleiotropic regulator that influences up to 252 genes related to diverse processes including chemotaxis, oxidative phosphorylation and carbon and nitrogen metabolism. Taken together, our findings suggest the rewired regulatory circuit of PfMqsA influences diverse physiological aspects of P. fluorescens 2P24 via the newly characterized AgtR.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas fluorescens/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Óperon , Pseudomonas fluorescens/genética
11.
Anal Bioanal Chem ; 411(27): 7165-7175, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31489439

RESUMO

A new fluorescence sensor (QDs-IIP), based on ion-imprinted polymers (IIP) as recognition element and Mn-doped ZnS quantum dots (QDs) as fluorophore, was synthesized for the selective and sensitive determination of hexavalent chromium (Cr(VI)) ions. The QD was first coated by SiO2 layer, and then modified with Cr(VI)-imprinted polymer. Several parameters affecting fluorescence intensity such as tetraethylorthosilicate (TEOS) volume, ZnS:Mn@SiO2 amount, and radiation time were investigated and optimized. The QDs-IIP was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), and scanning electron microscope (SEM). Furthermore, the fluorescence quenching mechanism was investigated by using UV-VIS and fluorescence spectrophotometer, and it was found that internal filtration effect was the main fluorescence quenching mechanism. The relative fluorescence intensity (F0/F) increased linearly with the increase of Cr(VI) concentration in the range of 20 µg L-1-1.0 mg L-1. The QDs-IIP sensor showed high recognition selectivity for Cr(VI) in comparison with the QDs-NIP sensor with an imprinting factor (IF) of 2.53, and it could be reused 5 times. In addition, an analytical method of Cr(VI) based on the QDs-IIP sensor was established with a limit of detection of 5.48 µg L-1, and was then applied to actual water samples with satisfactory results. Therefore, QDs-IIP can be deemed as a practicable fluorescent sensor for trace Cr(VI) detection. Graphical abstract.

12.
J Vis ; 18(8): 11, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30372760

RESUMO

Studies of perceptual learning have revealed a great deal of plasticity in adult humans. In this study, we systematically investigated the effects and mechanisms of several forms (trial-by-trial, block, and session rewards) and levels (no, low, high, subliminal) of monetary reward on the rate, magnitude, and generalizability of perceptual learning. We found that high monetary reward can greatly promote the rate and boost the magnitude of learning and enhance performance in untrained spatial frequencies and eye without changing interocular, interlocation, and interdirection transfer indices. High reward per se made unique contributions to the enhanced learning through improved internal noise reduction. Furthermore, the effects of high reward on perceptual learning occurred in a range of perceptual tasks. The results may have major implications for the understanding of the nature of the learning rule in perceptual learning and for the use of reward to enhance perceptual learning in practical applications.


Assuntos
Aprendizagem/fisiologia , Recompensa , Percepção Visual/fisiologia , Humanos , Transferência de Experiência , Adulto Jovem
13.
Int Wound J ; 20(1): 224, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36424820
14.
Bull Environ Contam Toxicol ; 97(1): 78-83, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27154036

RESUMO

In this study, seven kinds of synthetic musks were characterized in sediment samples of Yellow River Delta wetland, including celestolide, phantolide, traseolide, galaxolide, tonalide, musk xylene, and musk ketone. They were analyzed using gas chromatography-mass spectrometry (GC-MS), with recoveries of 91.85 %-105.35 % and the relative standard deviation (% RSD) were 3.30 %-8.11 % for all analytes. Galaxolide and tonalide were the main musk contaminants which were detected in sediment samples. The total concentrations of galaxolide ranged from 1.42 to 8.60 ng/g (mean 2.92 ng/g) (dry weight, dw); the total concentrations of tonalide ranged from the detection limit (LOD) to 3.63 ng/g (mean 1.69 ng/g, dw). The one reason of the higher level of SM pollutants was the domestic wastewater dumped by the local residents in some sites. And there was no significant correlation between SMs and TOC in sediment samples of Yellow River Delta wetland (p > 0.05).


Assuntos
Sedimentos Geológicos/química , Perfumes/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , China , Cromatografia Gasosa-Espectrometria de Massas/métodos , Rios/química , Águas Residuárias/química
15.
Ann Plast Surg ; 75(6): 644-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25180953

RESUMO

Revascularization in the early period after transplantation is the key to improving adipocyte survival. Vascular endothelial growth factor (VEGF) is known as the master regulator of angiogenesis. However, consensus is lacking regarding safe and efficient methods for applying VEGF in free fat transplantation in the clinical setting. We constructed calcium alginate (CA) microspheres loaded with VEGF to increase the survival of implanted adipocytes. BALB/c nude mice were used as adipose tissue transplantation receptors. Adipocytes were mixed with CA microspheres loaded with VEGF and implanted subcutaneously into the dorsum of mice. Grafts were harvested at week 3, 6, and 12 after transplantation. We found that the mass and microvascular density of grafts in the VEGF+CA group (CA microspheres loaded with VEGF) were statistically higher than that of other groups in a time-dependent manner. We demonstrated that CA microspheres loaded with VEGF can significantly promote the fat graft neovascularization, thus improving adipocyte survival.


Assuntos
Alginatos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Procedimentos de Cirurgia Plástica/métodos , Gordura Subcutânea/irrigação sanguínea , Gordura Subcutânea/transplante , Fator A de Crescimento do Endotélio Vascular/farmacologia , Alginatos/administração & dosagem , Animais , Portadores de Fármacos , Feminino , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microesferas , Distribuição Aleatória , Gordura Subcutânea/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/administração & dosagem
16.
Biosci Rep ; 44(6)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38828664

RESUMO

Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.


Assuntos
Antioxidantes , Cádmio , Chenopodium quinoa , Peróxido de Hidrogênio , Plântula , Ácido gama-Aminobutírico , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Cádmio/metabolismo , Cádmio/toxicidade , Chenopodium quinoa/metabolismo , Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/crescimento & desenvolvimento , Ácido gama-Aminobutírico/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Malondialdeído/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
17.
Environ Pollut ; 360: 124764, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154884

RESUMO

Cigarette smoke (CS) is an important indoor air pollutant associated with an increased risk of ocular surface disease. As the eye's outermost layer, the cornea is highly sensitive to air pollutants like CS. However, the specific mechanisms linking CS exposure to corneal dysfunction have not been fully elucidated. In the present study, we found that CS exposure damages corneal epithelial cells, accompanied by increased iron (Fe2+) levels and lipid peroxidation, both hallmarks of ferroptosis. Ferroptosis inhibitors, including Ferrostatin-1 (Fer-1) and Deferoxamine mesylate (DFO), protect against CS-induced cell damage. To understand the underlying mechanisms, we investigated how CS affects iron and lipid metabolism. Our results showed that CS could upregulate intracellular iron levels by increasing TFRC expression and promote lipid peroxidation by increasing ACSL4 expression. Silencing ACSL4 or TFRC expression prevented CS-induced ferroptosis. Furthermore, we found that the upregulation of TFRC and ACSL4 was driven by increased YAP transcription. Pharmacological or genetic inhibition of YAP effectively prevented corneal epithelial cell ferroptosis under CS stimulation. Additionally, our results suggest that CS exposure could increase O-GlcNAc transferase activity, leading to YAP O-GlcNAcylation. This glycosylation of YAP interfered with its K48-linked ubiquitination, resulting in YAP stabilization. Collectively, we found that CS exposure induces corneal epithelial cell ferroptosis via the YAP O-GlcNAcylation, and provide evidence that CS exposure is a strong risk factor for ocular surface disease.

18.
MycoKeys ; 106: 303-325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993357

RESUMO

Species of the family Microdochiaceae (Xylariales, Sordariomycetes) have been reported from worldwide, and collected from different plant hosts. The proposed new genus and two new species, viz., Macroidriella gen. nov., M.bambusae sp. nov. and Microdochiumaustrale sp. nov., are based on multi-locus phylogenies from a combined dataset of ITS rDNA, LSU, RPB2 and TUB2 with morphological characteristics. Microdochiumsinense has been collected from diseased leaves of Phragmitesaustralis and this is the first report of the fungus on this host plant. Simultaneously, we annotated 10,372 to 11,863 genes, identified 4,909 single-copy orthologous genes, and conducted phylogenomic analysis based on genomic data. A gene family analysis was performed and it will expand the understanding of the evolutionary history and biodiversity of the Microdochiaceae. The detailed descriptions and illustrations of species are provided.

19.
Front Pharmacol ; 15: 1393526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139634

RESUMO

Background: Refractory gastroesophageal reflux disease (refractory GERD) is a heterogeneous disease characterized by unresponsiveness or poor efficacy to proton-pump inhibitors (PPIs). This chronic disorder substantially weakens patients' mental wellbeing and quality of life, increasing the financial burden on society. Multiple articles have been reported in this area. However, literature involving scientometric analysis of refractory GERD is absent. Therefore, it is necessary to understand the evolution of research themes and the main hotspots of refractory GERD through bibliometric methods. Methods: All documents related to refractory GERD based on the WOS Core Collection from January 2000 to November 2023 were selected for analysis. Citespace V 6.1 R6, VOSviewer V 1.6.20, and Scimago Graphica V 1.0.38 were used to perform bibliometric analysis. Results: We collected a total of 241 research articles from 36 countries and 322 institutions, contributed by over 1,000 authors. Over the last 20 years, the number of articles in this field has increased year by year, and since 2011, the number of publications has increased dramatically, with 85.89% of the papers. These countries are led by the United States and Japan. GUT had the highest number of citations and DIGESTION had the highest number of publications. Research on standardized diagnosis and management, mechanisms, novel monitoring methods, and innovative drugs and procedures for refractory GERD are the main topics and hotspots in this field. This study also found that neuroimmune interaction is closely related to refractory GERD, which may be a new direction for future mechanism research. Conclusion: Our study is the first bibliometric analysis of the global literature on refractory GERD. This research provides valuable insights for researchers, enabling them to quickly understand the research frontier and hot topics of this field.

20.
Eur J Med Chem ; 271: 116435, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38648728

RESUMO

Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Mieloma Múltiplo , Bibliotecas de Moléculas Pequenas , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/uso terapêutico , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA