Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Gut ; 70(5): 853-864, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33589511

RESUMO

OBJECTIVE: Microbial exposure is critical to neonatal and infant development, growth and immunity. However, whether a microbiome is present in the fetal gut prior to birth remains debated. In this study, lambs delivered by aseptic hysterectomy at full term were used as an animal model to investigate the presence of a microbiome in the prenatal gut using a multiomics approach. DESIGN: Lambs were euthanised immediately after aseptic caesarean section and their cecal content and umbilical cord blood samples were aseptically acquired. Cecal content samples were assessed using metagenomic and metatranscriptomic sequencing to characterise any existing microbiome. Both sample types were analysed using metabolomics in order to detect microbial metabolites. RESULTS: We detected a low-diversity and low-biomass microbiome in the prenatal fetal gut, which was mainly composed of bacteria belonging to the phyla Proteobacteria, Actinobacteria and Firmicutes. Escherichia coli was the most abundant species in the prenatal fetal gut. We also detected multiple microbial metabolites including short chain fatty acids, deoxynojirimycin, mitomycin and tobramycin, further indicating the presence of metabolically active microbiota. Additionally, bacteriophage phiX174 and Orf virus, as well as antibiotic resistance genes, were detected in the fetal gut, suggesting that bacteriophage, viruses and bacteria carrying antibiotic resistance genes can be transmitted from the mother to the fetus during the gestation period. CONCLUSIONS: This study provides strong evidence that the prenatal gut harbours a microbiome and that microbial colonisation of the fetal gut commences in utero.


Assuntos
Feto/metabolismo , Feto/microbiologia , Microbioma Gastrointestinal/genética , Ovinos/genética , Ovinos/microbiologia , Animais , Feminino , Perfilação da Expressão Gênica , Metabolômica , Metagenômica , Modelos Animais , Gravidez
2.
Environ Microbiol ; 23(11): 6557-6568, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34490978

RESUMO

Solid diet supplementation in the early life stages of ruminants could improve rumen microbiota and tissue development. However, most studies focus on bacteria in the rumen content community. The microbiota attached on rumen epithelium are rarely investigated, and their correlations with rumen content bacteria and host transcripts are unknown. In this study, rumen digesta attached in the epithelium from goats in three diet regimes (milk replacer only, milk replacer supplemented concentrate and milk replacer supplemented concentrate plus alfalfa pellets) were collected for measurement of the epithelial microbiota using next generation sequencing. Correspondingly, the rumen tissues of the same animals were measured with the host transcriptome. The distinct microbial structures and compositions between rumen content and epithelial communities were associated with solid diet supplementation. Regarding rumen development in pre-weaning ruminants, a solid diet, especially its accompanying neutral detergent fibre nutrients, was the most significant driver that influenced the rumen microbiota and epithelium gene expression. Compared with content bacteria, rumen epithelial microbiota had a stronger association with the host transcriptome. The host transcriptome correlated with host phenotypes were associated with rumen epithelial microbiota and solid diet. This study reveals that the epithelial microbiota is crucial for proper rumen development, and solid diet could improve rumen development through both the rumen content and epithelial microbiota.


Assuntos
Microbiota , Rúmen , Ração Animal/análise , Animais , Dieta/veterinária , Microbiota/genética , Rúmen/microbiologia , Ruminantes/genética , Transcriptoma
3.
J Anim Physiol Anim Nutr (Berl) ; 104(3): 831-837, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32166787

RESUMO

The requirement of net protein (NP) and metabolizable protein (MP) by Dorper crossbred ewe lambs grown from 35 to 50 kg of body weight (BW) was assessed by comparative slaughter experiment. Thirty-five ewe lambs (33.5 ± 0.6 kg BW) of F1 crosses of Dorper × thin-tailed Han sheep were used: 7 lambs were slaughtered as reference animals at the start of the trial, and the remaining 28 lambs were randomly divided into 4 groups of 7 lambs each. Three of the 4 groups were fed a pelleted mixed diet (concentrate/roughage = 44:56, dry matter basis) for ad libitum intake or 65% or 45% of ad libitum intake, and they were all slaughtered when the lambs that were fed ad libitum reached 50 kg BW. The lambs from the fourth group were also fed ad libitum and slaughtered at 43 kg BW as the intermediate group. The intake of MP by the animals of these 4 groups was estimated, and their total body protein and protein retention were measured. The daily requirements of NP and MP for maintenance were 1.52 and 3.98 g/kg BW0.75 , respectively, with a partial efficiency of MP utilization for maintenance of 0.38. The MP requirement for growth ranged from 77.4 to 124.5 g/day for average daily gains from 100 to 250 g BW, and the partial efficiency of MP utilization for growth was 0.66. The Dorper crossbred ewe lambs required more MP for both maintenance and growth in comparison with the recommendations of the US nutritional system.


Assuntos
Ração Animal/análise , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Ovinos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Feminino , Necessidades Nutricionais , Ovinos/genética
4.
Environ Microbiol ; 21(7): 2333-2346, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30938032

RESUMO

Early gut microbial colonization is important for postnatal metabolic and immune development. However, little is known about the effects of different feeding modes (suckling versus bottle-feeding) or microbial sources on this process in farm animals. We found that suckled and bottle-fed newborn lambs had their own distinct gut microbiota. Results from 16S rRNA gene sequencing and qPCR showed that, compared with suckling, bottle feeding significantly increased the abundances of Escherichia/Shigella, Butyricicoccus, and Clostridium XlVa, while significantly decreased the abundance of Clostridium XI. The higher levels of Escherichia/Shigella in bottle-fed lambs suggest that artificial feeding may increase the number of potential pathogens and delay the establishment of the anaerobic environment and anaerobic microbes. Feeding modes also affected the direct transmission of bacteria from the mother and the environment to newborns. The SourceTracker analysis estimated that the early gut microbes of suckled lambs were mainly derived from the mother's teats (43%) and ambient air (28%); whereas those of bottle-fed lambs were dominated by bacteria from the mother's vagina (46%), ambient air (31%), and the sheep pen floor (12%). These findings advance our understanding of gut microbiota in early life and may help design techniques to improve gut microbiota and health.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Alimentação com Mamadeira/métodos , Microbioma Gastrointestinal/fisiologia , Ovinos/microbiologia , Animais , Animais Recém-Nascidos/microbiologia , Bactérias/genética , Feminino , Microbioma Gastrointestinal/genética , Humanos , Recém-Nascido , RNA Ribossômico 16S/genética , Vagina/microbiologia
5.
Trop Anim Health Prod ; 51(7): 1935-1941, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31134555

RESUMO

This study was conducted to evaluate the use of ramie as forage on growth performance, serum biochemical indices, and meat quality of Boer goats. For this, 60 Boer lambs were divided into four groups fed the TMR with 0%, 10%, 20%, and 40% (control, and groups I, II, III, respectively) ramie. The experiment lasted for 90 days with a pretest for 15 days. Venous blood and longissimus dorsi (LD) muscle samples were collected after 24 h fasted at the end of the experiment. The results showed that ramie seems no significant changes in average daily gain (ADG) and other parameters for growth performance, only 40% ramie in TMR significantly reduced average daily feed intake (ADFI) (P < 0.05). Compared to the control, group II (20%) showed significant increases in total protein (TP) and globulin (GLB) levels, and decreases in albumin/globulin level (P < 0.05) in serum. Meanwhile, serum total cholesterol (TC) (P < 0.05) and free thyroxine (FT4) level were significantly reduced with up to 20% or more ramie in TMR. Moreover, the total amino acid and flavor amino acid levels in LD muscle were not affected by ramie. However, significant increases (P < 0.05) were observed in linoleic acid, polyunsaturated fatty acid, and polyunsaturated fatty acid/saturated fatty acid levels in group II. Overall, these results indicated that up to 20% ramie in TMR have no impairment in growth performance, health and meat quality, whereas high level ramie might have a negative effect on feed intake.


Assuntos
Ração Animal/análise , Boehmeria , Dieta/veterinária , Carne/normas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados , Cabras/crescimento & desenvolvimento , Cabras/fisiologia , Distribuição Aleatória
6.
Asian-Australas J Anim Sci ; 27(2): 161-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25049939

RESUMO

THIS STUDY AIMED TO INVESTIGATE DIETARY CONCENTRATE: forage ratios (C:F) and undegraded dietary protein (UDP) on nitrogen balance and urinary excretion of purine derivatives (PD) in lambs. Four Dorper×thin-tailed Han crossbred castrated lambs with 62.3±1.9 kg body weight at 10 months of age were randomly assigned to four dietary treatments in a 2×2 factorial arrangement of two levels of C:F (40:60 and 60:40) and two levels of UDP (35% and 50% of CP), according to a complete 4×4 Latin-square design. Each experimental period lasted for 19 d. After a 7-d adaptation period, lambs were moved into individual metabolism crates for 12 d including 7 d of adaption and 5 d of metabolism trial. During the metabolism trial, total urine was collected for 24 h and spot urine samples were also collected at different times. Urinary PD was measured using a colorimetric method and creatinine was measured using an automated analyzer. Intake of dry matter (DM) (p<0.01) and organic matter (OM) (p<0.01) increased as the level of UDP decreased. Fecal N was not affected by dietary treatment (p>0.05) while urinary N increased as the level of UDP decreased (p<0.05), but decreased as dietary C:F increased (p<0.05). Nitrogen retention increased as dietary C:F increased (p<0.05). As dietary C:F increased, urinary excretion of PD increased (p<0.05), but was not affected by dietary UDP (p>0.05) or interaction between dietary treatments (p>0.05). Daily excretion of creatinine was not affected by dietary treatments (p<0.05), with an average value of 0.334±0.005 mmol/kg BW(0.75). A linear correlation was found between total PD excretion and PDC index (R(2) = 0.93). Concentrations of creatinine and PDC index in spot urine were unaffected by sampling time (p>0.05) and a good correlation was found between the PDC index (average value of three times) of spot urine and daily excretion of PD (R(2) = 0.88). These results suggest that for animals fed ad libitum, the PDC index in spot urine is effective to predict daily excretion of PD. In order to improve the accuracy of the spot sampling technique, an appropriate lag phase between the time of feeding and sampling should be determined so that the sampling time can coincide with the peak concentration of PD in the urine.

7.
Microbiome ; 12(1): 14, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254181

RESUMO

BACKGROUND: The gut microbiome of domestic animals carries antibiotic resistance genes (ARGs) which can be transmitted to the environment and humans, resulting in challenges of antibiotic resistance. Although it has been reported that the rumen microbiome of ruminants may be a reservoir of ARGs, the factors affecting the temporal dynamics of the rumen resistome are still unclear. Here, we collected rumen content samples of goats at 1, 7, 14, 28, 42, 56, 70, and 84 days of age, analyzed their microbiome and resistome profiles using metagenomics, and assessed the temporal dynamics of the rumen resistome in goats at the early stage of life under a conventional feeding system. RESULTS: In our results, the rumen resistome of goat kids contained ARGs to 41 classes, and the richness of ARGs decreased with age. Four antibiotic compound types of ARGs, including drugs, biocides, metals, and multi-compounds, were found during milk feeding, while only drug types of ARGs were observed after supplementation with starter feed. The specific ARGs for each age and their temporal dynamics were characterized, and the network inference model revealed that the interactions among ARGs were related to age. A strong correlation between the profiles of rumen resistome and microbiome was found using Procrustes analysis. Ruminal Escherichia coli within Proteobacteria phylum was the main carrier of ARGs in goats consuming colostrum, while Prevotella ruminicola and Fibrobacter succinogenes associated with cellulose degradation were the carriers of ARGs after starter supplementation. Milk consumption was likely a source of rumen ARGs, and the changes in the rumen resistome with age were correlated with the microbiome modulation by starter supplementation. CONCLUSIONS: Our data revealed that the temporal dynamics of the rumen resistome are associated with the microbiome, and the reservoir of ARGs in the rumen during early life is likely related to age and diet. It may be a feasible strategy to reduce the rumen and its downstream dissemination of ARGs in ruminants through early-life dietary intervention. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Humanos , Cabras , Rúmen , Microbiota/genética , Animais Domésticos , Microbioma Gastrointestinal/genética , Antibacterianos/farmacologia
8.
Microbiol Spectr ; 12(1): e0131423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38014976

RESUMO

IMPORTANCE: Yaks, as ruminants inhabiting high-altitude environments, possess a distinct rumen microbiome and are resistant to extreme living conditions. This study investigated the microbiota, resistome, and functional gene profiles in the rumen of yaks fed milk or milk replacer (MR), providing insights into the regulation of the rumen microbiome and the intervention of antimicrobial resistance in yaks through dietary methods. The abundance of Prevotella members increased significantly in response to MR. Tetracycline resistance was the most predominant. The rumen of yaks contained multiple antimicrobial resistance genes (ARGs) originating from different bacteria, which could be driven by MR, and these ARGs displayed intricate and complex interactions. MR also induced changes in functional genes. The enzymes associated with fiber degradation and butyrate metabolism were activated and showed close correlations with Prevotella members and butyrate concentration. This study allows us to deeply understand the ruminal microbiome and ARGs of yaks and their relationship with rumen bacteria in response to different milk sources.


Assuntos
Microbiota , Leite , Animais , Bovinos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Butiratos , Farmacorresistência Bacteriana/genética , Microbiota/genética , Rúmen/microbiologia
9.
Animals (Basel) ; 14(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473114

RESUMO

This study aimed to investigate the effect of feeding level on the growth and slaughter performance, and allometric growth of tissues and organs in female growing dairy goats. The trial included 10-20 and 20-30 kg weight stages with 48 female goat kids. The 24 goat kids in each stage were divided into 8 blocks based on weight, with 3 kids per block. Then, three kids from each block were randomly assigned to one of the three treatments, namely ad libitum (AL100), 70% of ad libitum (AL70), or 40% of ad libitum (AL40). The slaughter trial was conducted when the AL100 kids reached the target weight of 20 or 30 kg. The results showed that the ADG and feed conversion rate showed a linear decline as the feed level decreased (p < 0.05). Compared with the AL70 and AL100 groups, the AL40 group exhibited lower shrunk body weight, empty body weight, hot carcass weight, net meat rate, carcass meat rate, and visceral fat weight (p < 0.05) in both stages. Moreover, the AL40 group showed lower weights for skin and mohair, blood, rumen, small intestine, large intestine, mammary gland, and uterus than the AL70 and AL100 groups (p < 0.05) in both stages. However, feeding level did not affect organ indices in the two stages (p > 0.05). The bone, skin and mohair were isometric (b ≈ 1), but the muscle, visceral fat, and most internal organs were positive (b > 1) in both stages. In conclusion, feeding level affects the growth and development of dairy goats, which vary depending on the body weight stage and specific tissues and organs.

10.
Sci Data ; 11(1): 749, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987532

RESUMO

Although early solid diet supplementation is a common practice to improve the growth and development in goat kids, its biological mechanism how solid diet induces rumen microbiota and epithelial development is still unknow. In this study, rumen fermentation parameters, 16S rRNA sequencing for rumen content and epithelial microbiota, transcriptomics and proteomics of epithelium were determined to classify the effects of solid diet supplementation. Here, we classified the changes of goat phenotypes (i.e., growth performance, rumen fermentation and development) and linked them to the changes of rumen microbiota, transcriptome and expressed proteins. The mechanism of solid diet improving rumen development was elucidated preliminarily. Moreover, different roles between the rumen content and epithelial microbiota were identified. Thess datasets expands our understanding of the association between the early diet intervention and rumen development, providing the useful information how nutrient strategy affects rumen function and subsequently improves the host growth. The generated data provides insights in the importance of rumen niche microbiota and microbe-host interactions, which benefits future studies.


Assuntos
Dieta , Cabras , Rúmen , Transcriptoma , Animais , Rúmen/microbiologia , Rúmen/metabolismo , Dieta/veterinária , Ração Animal/análise , Proteômica , Microbioma Gastrointestinal , RNA Ribossômico 16S/genética , Epitélio/metabolismo , Fermentação
11.
Sci Data ; 11(1): 897, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154041

RESUMO

The rumen microbiome plays an important role in providing energy and protein to the host. Manipulation of rumen microbiome during early life may have a long-term beneficial effect on the health, growth performance, and feed efficiency of ruminants. To better understand the profiles and functional potentials of rumen microbiome in young ruminants, metagenomic binning was performed to investigate the rumen microbiome of goat kids from one to 84 days of age. A total of 797 metagenome-assembled genomes (MAGs) were recovered from the rumen of 42 Laiwu black goat kids. Our findings provide fundamental knowledge of the rumen microbiome during early life based on metagenomic binning, which may provide insights into effective strategies to achieve long-term beneficial effects on animal health and production.


Assuntos
Cabras , Metagenoma , Rúmen , Animais , Cabras/microbiologia , Rúmen/microbiologia , Microbioma Gastrointestinal
12.
Meat Sci ; 218: 109644, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39241667

RESUMO

Protein grass hay (PGH) was used as a new feed source for lambs to study its effect on fattening performance and meat quality. Fifty-six male lambs were allotted to four experimental groups and fed for eight weeks either alfalfa hay (AH)-based diet (control) or diets in which AH was replaced with 33 %, 66 %, or 99 % PGH. The inclusion of PGH did not affect final body weight, dry matter intake, average daily gain, feed conversion ratio, or carcass weight. Moreover, substituting AH with PGH at any level did not influence the ruminal fermentation or serum biochemical parameters, meat color, water holding capacity, shear force, or amino acid profile. However, relative liver weight was increased with 66 % substitutions. Furthermore, replacing 99 % AH with PGH decreased the meat's pH at 24 h. Higher levels of C18:3n-3, C20:5n-3, and total n-3 PUFA and a lower ratio of n-6: n-3 PUFA were also observed in meat from lambs fed PGH at 99 %. These findings suggest that PGH could be incorporated into the lamb's diet up to 99 % without compromising fattening performance and body health while improving their meat n-3 PUFA deposition.


Assuntos
Ração Animal , Dieta , Poaceae , Carne Vermelha , Carneiro Doméstico , Animais , Masculino , Ração Animal/análise , Dieta/veterinária , Carne Vermelha/análise , Proteínas Alimentares/análise , Fenômenos Fisiológicos da Nutrição Animal , Rúmen/metabolismo , Medicago sativa , Concentração de Íons de Hidrogênio , Ácidos Graxos Ômega-3/análise , Fígado/metabolismo , Fígado/química , Aminoácidos/análise , Fermentação , Cor , Músculo Esquelético/química
13.
Asian-Australas J Anim Sci ; 26(9): 1282-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25049910

RESUMO

A comparative slaughter trial was conducted to estimate the phosphorus (P) requirement for maintenance and growth of crossbred lambs of Dorper with a Chinese indigenous sheep breed, thin-tailed Han sheep. Thirty-five Dorper×thin-tailed Han crossbred, noncastrated ram lambs (20.3±0.22 kg of shrunk body weight (SBW)) were used. Seven lambs were randomly chosen and slaughtered at 20 kg SBW as the baseline group for measuring initial body composition. Another seven lambs were also randomly chosen and offered a pelleted mixed diet for ad libitum intake and slaughtered at 28 kg SBW. The remaining 21 sheep were randomly divided into 3 groups with 7 sheep each and subject to the same diet of either 70 or 40% of ad libitum intake. The 3 groups were slaughtered when the sheep fed ad libitum reached 35 kg of SBW. Body P contents were determined after slaughter. The results showed that the net P requirement for maintenance was 30.0 mg/kg of empty body weight (EBW) or 23.4 mg/kg body weight (BW), and the P requirement for growth decreased from 5.3 to 5.0 g/kg of EBW gain as the lamb grew from 20 to 35 kg. The net P requirement for growth of Dorper×thin-tailed Han crossbred ram lambs was lower than that of sheep adopted by the American nutritional system.

14.
Anim Nutr ; 15: 10-21, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746660

RESUMO

Beta-hydroxybutyric acid (BHBA), as one of the main metabolic ketones in the rumen epithelium, plays critical roles in cellular growth and metabolism. The ketogenic capacity is associated with the maturation of rumen in young ruminants, and the exogenous BHBA in diet may promote the rumen development. However, the effects of exogenous BHBA on rumen remain unknown. This is the first study to investigate the mechanisms of BHBA on gene expression and metabolism of rumen epithelium using young goats as a model through multi-omics techniques. Thirty-two young goats were divided into control, low dose, middle dose, and high dose groups by supplementation of BHBA in starter (0, 3, 6, and 9 g/day, respectively). Results demonstrated the dietary of BHBA promoted the growth performance of young goats and increased width and length of the rumen papilla (P < 0.05). Hub genes in host transcriptome that were positively related to rumen characteristics and BHBA concentration were identified. Several upregulated hub genes including NDUFC1, NDUFB4, NDUFB10, NDUFA11 and NDUFA1 were enriched in the gene ontology (GO) pathway of nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) activity, while ATP5ME, ATP5PO and ATP5PF were associated with ATP synthesis. RT-PCR revealed the expression of genes (HMGCS2, BDH1, SLC16A3, etc.) associated with lipolysis increased significantly by BHBA supplementation (P < 0.05). Metabolomics indicated that some metabolites such as glucose, palmitic acid, cortisol and capric acid were also increased (P < 0.05). This study revealed that BHBA promoted rumen development through altering NADH balance and accelerating lipid metabolism, which provides a theoretical guidance for the strategies of gastrointestinal health and development of young ruminants.

15.
Microbiol Spectr ; 11(1): e0338722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36475888

RESUMO

Rumen microbiota transplantation (RMT) can improve rumen fermentation and ruminant performance. However, due to the microbial distinction in the fluid and solid phases, the current understanding of their specific roles in RMT is insufficient. Thus, this study was conducted to determine the effects of the microbiota from the recombination of the rumen fluid and solid phases on in vitro fermentation. The rumen fresh fluid (FF) and fresh solid (FS) phases were collected, and FS was washed for the fresh solid washing solution (FW). The fractions of FF, FS, and FW were autoclaved to obtain autoclaved fluid (AF), solid (AS), and washing solution (AW). Then, these phases were recombined to form eight treatments: FFFS, FFAS, FFFW, FFAW, AFFS, AFAS, AFFW, and AFAW. After 24 h of fermentation, the gas production in AFFS, FFFS, and FFAS was significantly higher than that of other groups. AFAS and AFAW had significantly lower alpha diversity than did other groups. The solid phase was enriched with fiber-degrading bacteria, including Treponema, Succinivibrio, and Ruminococcus. The fluid phase was dominated by Prevotella, Christensenellaceae R-7 group, and Rikenellaceae RC9 gut group. The washing solution had more Ruminobacter, Lachnospiraceae, and Fibrobacter. Moreover, the double-autoclaved phases displayed increased abundances of harmful bacteria, as AFAS and AFAW had higher Streptococcus and Prevotellaceae YAB2003 group abundances. A network analysis showed that the signature microbiota in AFAS and AFAW were negatively associated with the keystone microbiota in the other groups. In summary, the recombination of the solid phase and the autoclaved fluid phase had the best in vitro fermentation result, which provided certain references for RMT. IMPORTANCE This is the first study to systematically evaluate the in vitro fermentation efficiency of diets by bacteria harvested and recombined from the fluid and solid phases of rumen contents, and it took into account the effect of washing the rumen solid phase. Using "reconstituted rumen content", this study confirmed that bacteria from different fractions of the rumen digesta resulted in different fermentation production of diets and found the characteristic bacteria in each phase of rumen contents. Our data reveal that the bacteria in the solid phase have more positive effects on the in vitro fermentation parameters, that the combination of the autoclaved fluid phase and the fresh solid phase have the most ideal fermentation effect, and that the autoclave process significantly influenced the microbial composition and increased the abundance of harmful bacteria. This study provides a landmark reference for the future use of rumen microbiota transplantation to improve animal feed utilization and growth performance.


Assuntos
Microbiota , Rúmen , Animais , Rúmen/microbiologia , Fermentação , Dieta , Bactérias/genética , Recombinação Genética
16.
Antioxidants (Basel) ; 12(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37107254

RESUMO

Under current breeding conditions, multiple stressors are important challenges facing animal husbandry in achieving animal wellbeing. For many years, the use of antibiotics has been a social concern in the livestock industry. With the implementation of the non-antibiotics policy, there is an urgent need to find relevant technologies and products to replace antibiotics and to solve the problem of disease prevention during animal growth. Phytogenic extracts have the unique advantages of being natural and extensive sources, having a low residue, and being pollution-free and renewable. They can relieve the various stresses, including oxidative stress, on animals and even control their inflammation by regulating the signaling pathways of proinflammatory cytokines, improving animal immunity, and improving the structure of microorganisms in the gastrointestinal tract, thereby becoming the priority choice for improving animal health. In this study, we reviewed the types of antioxidants commonly used in the livestock industry and their applicable effects on ruminants, as well as the recent research progress on their potential mechanisms of action. This review may provide a reference for further research and for the application of other phytogenic extracts and the elucidation of their precise mechanisms of action.

17.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36562268

RESUMO

The present study evaluated the effects of dietary medium-chain fatty acid (MCFA) and Bacillus on growth performance, nutrient digestibility, antioxidant capacity, colonic fermentation, and microbiota of weaning piglets. A total of 400 weaned piglets were randomly divided into 4 treatments, with 10 replicates per treatment and 10 pigs per replicate. The treatment included: basal diet (control, CON), basal diet with 0.588 g/kg MCFA (MCF), basal diet with 1.3 × 109 CFU/kg Bacillus (BAC), and basal diet with 0.588 g/kg MCFA and 1.3 × 109 CFU/kg Bacillus (SYN). Compared with CON group, the average daily gain of MCF and SYN in the early (1 to 9 d) and whole stage (1 to 36 d) of trail were improved (P < 0.05), the feed to gain ratio of MCF in later (10 to 36 d) and whole stage of trial were decreased (P < 0.05), and the diarrhea rate of SYN in the early stage (1 to 9 d) of trial decreased (P < 0.05). The digestibility of dry matter, ether extract, acid detergent fiber digestibility of MCF were decreased (P < 0.05) compared with CON. The serum d-lactic acid in MCF, BAC, and SYN were lower (P < 0.05) compared with CON group. Compared with CON group, the contents of total antioxidant capacity, superoxide dismutase, and glutathione peroxidase were greater (P < 0.05), whereas the content of malondialdehyde and the contents of colonic isobutyrate and isovalerate were lower (P < 0.05) in MCF. The microbial Shannon and Simpson diversity was lower in MCF (P < 0.05) than that in BAC and SYN. The relative abundance of Prevotella was greater (P < 0.05), whereas the Treponema and Oscillibacter were lower (P < 0.05) in MCF than that in BAC and SYN. In addition, the metabolic pathways of bacteria such as pentose phosphate pathway, adenosine nucleotides degradation II were enhanced (P < 0.05), whereas the pathways such as incomplete reductive TCA cycle, and TCA cycle IV (2-oxoglutarate decarboxylase) were decreased (P < 0.05) in MCF compared with BAC. The results indicated that dietary MCFA and Bacillus in combination improved the intestinal barrier function of piglets by changing the intestinal microbiota and its metabolic function, and finally alleviated the diarrhea rate in early weaning stage and improved growth performance in whole trial period. In addition, MCFA was effective in improving feed efficiency and antioxidant capacity of piglets.


Weaning is the most stressful stage in the growth of piglets. Weaning stress can reduce the feed intake of piglets, cause diarrhea and even death of piglets, and finally result in economic losses to livestock production. To alleviate the weaning stress of piglets after the prohibition of antibiotics in feed, this study evaluated the effect and mechanism of medium-chain fatty acid (MCFA) and Bacillus in combination on regulating the intestinal microbiota balance and health status of weaned piglets. It was found that dietary MCFA and Bacillus in combination improved the intestinal barrier function of piglets by changing the intestinal microbial community and metabolic pathway encoded by bacteria, and finally alleviated the diarrhea rate in the early weaning stage and improved the growth performance in whole trial period. In addition, MCFA was effective in improving feed efficiency and antioxidant capacity of piglets.


Assuntos
Bacillus , Microbioma Gastrointestinal , Suínos , Animais , Suplementos Nutricionais/análise , Antioxidantes/metabolismo , Desmame , Dieta , Ácidos Graxos/metabolismo , Diarreia/veterinária , Ração Animal/análise
18.
Biology (Basel) ; 12(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37237498

RESUMO

It is well known that solid diet supplementation in early life can significantly promote rumen development and metabolic function in young ruminants. However, the changes in the expressed proteome and related metabolism in rumen epithelium in response to a supplemented solid diet remain unclear. In this study, rumen epithelial tissue from goats in three diet regimes including milk replacer only (MRO), milk replacer supplemented concentrate (MRC), and milk replacer supplemented concentrate plus alfalfa pellets (MCA) were collected for measurement of the expression of epithelial proteins using proteomic technology (six per group). The results showed that solid diet significantly improved the growth performance of goats, enhanced the ability of rumen fermentation, and promoted the development of epithelial papilla (p < 0.05). Proteome analysis revealed the distinct difference in the expressed protein in the MRC and MCA group compared with the MRO group (42 upregulated proteins and 79 downregulated proteins in MRC; 38 upregulated proteins and 73 downregulated proteins in MCA). Functional analysis showed that solid diet supplementation activated a variety of molecular functions in the epithelium, including protein binding, ATP binding, structural constituent of muscle, etc., in the MRC and MCA groups. Meanwhile, the expression of proteins related to fatty acid metabolism, the PPAR signaling pathway, valine, leucine, and isoleucine degradation, and butanoate metabolism were upregulated, being stimulated by solid feed. In contrast, the proteins associated with carbohydrate digestion and absorption and glycosaminoglycan degradation were downregulated. In addition, the protein expression of enzymes involved in ketone body synthesis in the rumen was generally activated, which was caused by solid feed. In summary, solid feed promoted the development of rumen epithelium by changing the expression of proteins related to fatty acid metabolism, energy synthesis, and signal transduction. The ketone body synthesis pathway might be the most important activated pathway, and provides energy for rumen development.

19.
Animals (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570229

RESUMO

The digestive system of newborn ruminant functions is similar to monogastric animals, and therefore milk flows into the abomasum instead of rumen for digestion. The rumen undergoes tremendous changes over time in terms of structure, function, and microbiome. These changes contribute to the smooth transition from the dependence on liquid diets to solid diets. Goat kids are usually separated at early ages from their dams in commercial intensive systems. The separation from dams minimizes the transfer of microbiota from dams to newborns. In this review, understanding how weaning times and methodologies could affect the normal development and growth of newborn goats may facilitate the development of new feeding strategies to control stress in further studies.

20.
Anim Nutr ; 12: 345-359, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36788929

RESUMO

Developing alternatives to antibiotics for prevention of gastrointestinal dysbiosis in early-weaning farmed animals is urgently needed. This study was to explore the potential effects of trans-10, cis-12 conjugated linoleic acid (CLA) on maintaining ruminal homeostasis of young ruminants during the weaning transition period. Thirty neonatal lambs were selected (6 lambs per group) and euthanized for rumen microbial and epithelial analysis. The lambs were weaned at 28 d and experienced the following 5 treatments: euthanized on d 28 as the pre-weaning control (CON0), fed starter feed for 5 (CON5) or 21 (CON21) d, fed starter feed with 1% of CLA supplemented for 5 (CLA5) or 21 (CLA21) d. Results showed that the average daily weight gain and dry matter intake were significantly higher in CLA5 than CON5 group. As compared with the CON5 and CON21 group, the relative abundances of volatile fatty acid (VFA) producing bacteria including Bacteroides, Treponema, Parabacteroides and Anaerovibrio, as well as the concentrations of acetate, butyrate and total VFA were significantly increased in CLA5 and CLA21 group, respectively. Integrating microbial profiling and epithelial transcriptome results showed that 7 downregulated inflammatory signaling-related host genes IL2RA, CXCL9, CD4, CCR4, LTB, SPP1, and BCL2A1 with CLA supplementation were significantly negatively correlated with both VFA concentration and VFA producing bacteria, while 3 (GPX2, SLC27A2 and ALDH3A1) and 2 (GSTM3 and GSTA1) upregulated metabolism-related genes, significantly positively correlated with either VFA concentration or VFA producing bacteria, respectively. To confirm the effects of CLA on epithelial signal transduction, in vitro experiment was further conducted by treating rumen epithelial cells without or with IL-17A + TNF-α for 12 h after pretreatment of 100 µM CLA or not (6 replicates per treatment). The results demonstrated the anti-inflammatory effect of CLA via suppressing the protein expression of NF-кB p-p65/p65 with the activation of peroxisome proliferator-activated receptor gamma (PPARγ). In conclusion, CLA supplementation enhanced the ruminal microbiota-driven transcriptional regulation in healthy rumen epithelial development via rumen VFA production, and CLA may therefore serve as an alternative way to alleviate early-weaning stress and improve physiological and metabolic conditions of young ruminants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA