RESUMO
Epidemiologic studies demonstrate an association between early-life respiratory illnesses (RIs) and the development of childhood asthma. However, it remains uncertain whether these children are predisposed to both conditions or if early-life RIs induce alterations in airway function, immune responses, or other human biology that contribute to the development of asthma. Puerto Rican children experience a disproportionate burden of early-life RIs and asthma, making them an important population for investigating this complex interplay. PRIMERO, the Puerto Rican Infant Metagenomics and Epidemiologic Study of Respiratory Outcomes , recruited pregnant women and their newborns to investigate how the airways develop in early life among infants exposed to different viral RIs, and will thus provide a critical understanding of childhood asthma development. As the first asthma birth cohort in Puerto Rico, PRIMERO will prospectively follow 2,100 term healthy infants. Collected samples include post-term maternal peripheral blood, infant cord blood, the child's peripheral blood at the year two visit, and the child's nasal airway epithelium, collected using minimally invasive nasal swabs, at birth, during RIs over the first two years of life, and at annual healthy visits until age five. Herein, we describe the study's design, population, recruitment strategy, study visits and procedures, and primary outcomes.
RESUMO
Elevated expression and activity of the epidermal growth factor receptor (EGFR) is associated with development and progression of head and neck cancer (HNC) and a poor prognosis. Clinical trials with EGFR tyrosine kinase inhibitors (e.g., erlotinib) have been disappointing in HNC. To investigate the mechanisms mediating resistance to these agents, we developed an HNC cell line (HN5-ER) with acquired erlotinib resistance. In contrast to parental HN5 HNC cells, HN5-ER cells exhibited an epithelial-mesenchymal (EMT) phenotype with increased migratory potential, reduced E-cadherin and epithelial-associated microRNAs (miRNA), and elevated vimentin expression. Phosphorylated receptor tyrosine kinase profiling identified Axl activation in HN5-ER cells. Growth and migration of HN5-ER cells were blocked with a specific Axl inhibitor, R428, and R428 resensitized HN5-ER cells to erlotinib. Microarray analysis of HN5-ER cells confirmed the EMT phenotype associated with acquired erlotinib resistance, and identified activation of gene expression associated with cell migration and inflammation pathways. Moreover, increased expression and secretion of interleukin (IL)-6 and IL-8 in HN5-ER cells suggested a role for inflammatory cytokine signaling in EMT and erlotinib resistance. Expression of the tumor suppressor miR-34a was reduced in HN5-ER cells and increasing its expression abrogated Axl expression and reversed erlotinib resistance. Finally, analysis of 302 HNC patients revealed that high tumor Axl mRNA expression was associated with poorer survival (HR = 1.66, P = 0.007). In summary, our results identify Axl as a key mediator of acquired erlotinib resistance in HNC and suggest that therapeutic inhibition of Axl by small molecule drugs or specific miRNAs might overcome anti-EGFR therapy resistance.
Assuntos
Benzocicloeptenos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Quinazolinas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Triazóis/farmacologia , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cloridrato de Erlotinib , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptor Tirosina Quinase AxlRESUMO
Aberrant expression of the epidermal growth factor receptor (EGFR) and/or human epidermal growth factor receptor 2 (HER2) is a feature of many human tumors and is associated with disease progression, treatment resistance, and poor prognosis. Protein kinase B/Akt, an important downstream effector of these receptor tyrosine kinases, induces signaling pathways that control cancer cell proliferation, invasion, angiogenesis, and apoptosis resistance. MicroRNAs (miRNAs), small noncoding RNAs that bind to the 3'-untranslated region of target mRNAs, are now recognized to play key roles in the regulation of gene expression, particularly in tumor development and metastasis. We have shown that miRNA-7 (miR-7) and miRNA-331-3p (miR-331-3p) directly regulate expression of EGFR and HER2, respectively, in glioblastoma and prostate cancer cell lines. As a consequence, miR-7 and miR-331-3p reduce Akt activity and thus have the capacity to regulate a signaling pathway critical to the development and progression of glioblastoma and prostate cancer. This chapter provides a detailed approach outlining how to confirm that a putative target of a miRNA is a direct target, and subsequent assessment of downstream signaling mediators.
Assuntos
Receptores ErbB/metabolismo , MicroRNAs/genética , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais/fisiologia , Actinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Immunoblotting , Masculino , Neoplasias/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptor ErbB-2/genética , Transdução de Sinais/genéticaRESUMO
Recent years have seen a massive expansion in our understanding of the biology of microRNAs (miRNAs) in cancer, through the identification of miRNAs with aberrant expression in specific cancers and the functional validation of their critical target molecules and cellular effects. In parallel, targeted therapeutic agents to block signalling pathways critical to tumour growth and progression have been developed but have yielded disappointing clinical results. The discovery of miRNAs that regulate ErbB signalling in cancer cells brings new hope that in the future these oncogenic pathways can be more effectively inhibited to improve patient outcomes.
Assuntos
Receptores ErbB/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Neoplasias/genética , Receptor ErbB-4 , Transdução de Sinais/genéticaRESUMO
The epidermal growth factor receptor (EGFR) is frequently overexpressed in cancer and is an important therapeutic target. Aberrant expression and function of microRNAs have been associated with tumorigenesis. Bioinformatic predictions suggest that the human EGFR mRNA 3'-untranslated region contains three microRNA-7 (miR-7) target sites, which are not conserved across mammals. We found that miR-7 down-regulates EGFR mRNA and protein expression in cancer cell lines (lung, breast, and glioblastoma) via two of the three sites, inducing cell cycle arrest and cell death. Because miR-7 was shown to decrease EGFR mRNA expression, we used microarray analysis to identify additional mRNA targets of miR-7. These included Raf1 and multiple other genes involved in EGFR signaling and tumorigenesis. Furthermore, miR-7 attenuated activation of protein kinase B (Akt) and extracellular signal-regulated kinase 1/2, two critical effectors of EGFR signaling, in different cancer cell lines. These data establish an important role for miR-7 in controlling mRNA expression and indicate that miR-7 has the ability to coordinately regulate EGFR signaling in multiple human cancer cell types.