Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33758095

RESUMO

Osteoarthritis (OA) is a painful and debilitating condition of synovial joints without any disease-modifying therapies [A. M. Valdes, T. D. Spector, Nat. Rev. Rheumatol. 7, 23-32 (2011)]. We previously identified mechanosensitive PIEZO channels, PIEZO1 and PIEZO2, both expressed in articular cartilage, to function in chondrocyte mechanotransduction in response to injury [W. Lee et al., Proc. Natl. Acad. Sci. U.S.A. 111, E5114-E5122 (2014); W. Lee, F. Guilak, W. Liedtke, Curr. Top. Membr. 79, 263-273 (2017)]. We therefore asked whether interleukin-1-mediated inflammatory signaling, as occurs in OA, influences Piezo gene expression and channel function, thus indicative of maladaptive reprogramming that can be rationally targeted. Primary porcine chondrocyte culture and human osteoarthritic cartilage tissue were studied. We found that interleukin-1α (IL-1α) up-regulated Piezo1 in porcine chondrocytes. Piezo1 expression was significantly increased in human osteoarthritic cartilage. Increased Piezo1 expression in chondrocytes resulted in a feed-forward pathomechanism whereby increased function of Piezo1 induced excess intracellular Ca2+ at baseline and in response to mechanical deformation. Elevated resting state Ca2+ in turn rarefied the F-actin cytoskeleton and amplified mechanically induced deformation microtrauma. As intracellular substrates of this OA-related inflammatory pathomechanism, in porcine articular chondrocytes exposed to IL-1α, we discovered that enhanced Piezo1 expression depended on p38 MAP-kinase and transcription factors HNF4 and ATF2/CREBP1. CREBP1 directly bound to the proximal PIEZO1 gene promoter. Taken together, these signaling and genetic reprogramming events represent a detrimental Ca2+-driven feed-forward mechanism that can be rationally targeted to stem the progression of OA.


Assuntos
Condrócitos/metabolismo , Interleucina-1alfa/metabolismo , Canais Iônicos/genética , Mecanotransdução Celular/imunologia , Osteoartrite/imunologia , Fator 2 Ativador da Transcrição/metabolismo , Animais , Cálcio/metabolismo , Cartilagem Articular/citologia , Cartilagem Articular/imunologia , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/imunologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Canais Iônicos/metabolismo , Mecanotransdução Celular/genética , Osteoartrite/genética , Osteoartrite/patologia , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Sus scrofa , Regulação para Cima/imunologia
2.
Anal Chem ; 95(21): 8250-8257, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37186575

RESUMO

Aflatoxin B1 (AFB1) is a kind of potently carcinogenic fungal metabolite in food threatening human health, and it is crucial and challenging to develop advanced nonimmune approaches for AFB1 determination. Addressing this challenge, we successfully constructed a nanoassembly (PdE-PDI/SDS) by noncovalently coupling a cationic perylene diimide derivative (PdE-PDI) and sodium dodecyl sulfate (SDS), exhibiting high-density charges and a specific surface area for rapid sensing of AFB1. The large electronic conjugate structure and rigid plane of PdE-PDI enable it to form more stable σ-π, π-π coordination, and hydrogen bonds with AFB1. Additionally, the introduction of SDS significantly amplifies noncovalent interactions and enhances the quenching efficiency of PdE-PDI toward AFB1. The proposed PdE-PDI/SDS exhibited excellent specificity to AFB1 and showed dosage-sensitive detection with detection limit as low as 0.74 ng mL-1. Finally, the PdE-PDI/SDS was successfully applied in cereal samples with good recoveries from 94.61 to 109.92%. To our knowledge, this is the first time a fluorescent strategy from the point of self-assembly for AFB1 determination is reported, which holds great promise for wide applications of perylene diimide derivative in food safety.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Perileno , Humanos , Contaminação de Alimentos/análise , Corantes Fluorescentes/química , Aflatoxina B1/análise , Dodecilsulfato de Sódio , Limite de Detecção , Aptâmeros de Nucleotídeos/química
3.
Gastroenterology ; 161(1): 301-317.e16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819485

RESUMO

BACKGROUND & AIMS: Limited understanding of pruritus mechanisms in cholestatic liver diseases hinders development of antipruritic treatments. Previous studies implicated lysophosphatidic acid (LPA) as a potential mediator of cholestatic pruritus. METHODS: Pruritogenicity of lysophosphatidylcholine (LPC), LPA's precursor, was examined in naïve mice, cholestatic mice, and nonhuman primates. LPC's pruritogenicity involving keratinocyte TRPV4 was studied using genetic and pharmacologic approaches, cultured keratinocytes, ion channel physiology, and structural computational modeling. Activation of pruriceptor sensory neurons by microRNA-146a (miR-146a), secreted from keratinocytes, was identified by in vitro and ex vivo Ca2+ imaging assays. Sera from patients with primary biliary cholangitis were used for measuring the levels of LPC and miR-146a. RESULTS: LPC was robustly pruritic in mice. TRPV4 in skin keratinocytes was essential for LPC-induced itch and itch in mice with cholestasis. Three-dimensional structural modeling, site-directed mutagenesis, and channel function analysis suggested a TRPV4 C-terminal motif for LPC binding and channel activation. In keratinocytes, TRPV4 activation by LPC induced extracellular release of miR-146a, which activated TRPV1+ sensory neurons to cause itch. LPC and miR-146a levels were both elevated in sera of patients with primary biliary cholangitis with itch and correlated with itch intensity. Moreover, LPC and miR-146a were also increased in sera of cholestatic mice and elicited itch in nonhuman primates. CONCLUSIONS: We identified LPC as a novel cholestatic pruritogen that induces itch through epithelia-sensory neuron cross talk, whereby it directly activates skin keratinocyte TRPV4, which rapidly releases miR-146a to activate skin-innervating TRPV1+ pruriceptor sensory neurons. Our findings support the new concept of the skin, as a sensory organ, playing a critical role in cholestatic itch, beyond liver, peripheral sensory neurons, and central neural pathways supporting pruriception.


Assuntos
Colestase/complicações , Queratinócitos/metabolismo , Lisofosfatidilcolinas , Prurido/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/inervação , Canais de Cátion TRPV/metabolismo , Adulto , Idoso , Animais , Comportamento Animal , Células Cultivadas , Colestase/genética , Colestase/metabolismo , Colestase/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Prurido/induzido quimicamente , Prurido/genética , Prurido/fisiopatologia , Transdução de Sinais , Canais de Cátion TRPV/genética
4.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31694955

RESUMO

The molecular mechanisms of pain associated with alphaherpesvirus latency are not clear. We hypothesize that the voltage-gated sodium channels (VGSC) on the dorsal root ganglion (DRG) neurons controlling electrical impulses may have abnormal activity during latent viral infection and reactivation. We used herpes simplex virus 1 (HSV-1) to infect the human DRG-derived neuronal cell line HD10.6 in order to study the establishment and maintenance of viral latency, viral reactivation, and changes in the functional expression of VGSCs. Differentiated cells exhibited robust tetrodotoxin (TTX)-sensitive sodium currents, and acute infection significantly reduced the functional expression of VGSCs within 24 h and completely abolished VGSC activity within 3 days. A quiescent state of infection mimicking latency can be achieved in the presence of acyclovir (ACV) for 7 days followed by 5 days of ACV washout, and then the viruses can remain dormant for another 3 weeks. It was noted that during the establishment of HSV-1 latency, the loss of VGSC activity caused by HSV-1 infection could not be blocked by ACV treatment. However, neurons with continued ACV treatment for another 4 days showed a gradual recovery of VGSC functional expression. Furthermore, the latently infected neurons exhibited higher VGSC activity than controls. The overall regulation of VGSCs by HSV-1 during quiescent infection was proved by increased transcription and possible translation of Nav1.7. Together, these observations demonstrated a very complex pattern of electrophysiological changes during HSV infection of DRG neurons, which may have implications for understanding of the mechanisms of virus-mediated pain linked to latency and reactivation.IMPORTANCE The reactivation of herpesviruses, most commonly varicella-zoster virus (VZV) and pseudorabies virus (PRV), may cause cranial nerve disorder and unbearable pain. Clinical studies have also reported that HSV-1 causes postherpetic neuralgia and chronic occipital neuralgia in humans. The current work meticulously studies the functional expression profile changes of VGSCs during the processes of HSV-1 latency establishment and reactivation using human dorsal root ganglion-derived neuronal HD10.6 cells as an in vitro model. Our results indicated that VGSC activity was eliminated upon infection but steadily recovered during latency establishment and that latent neurons exhibited even higher VGSC activity. This finding advances our knowledge of how ganglion neurons generate uncharacteristic electrical impulses due to abnormal VGSC functional expression influenced by the latent virus.


Assuntos
Aciclovir/farmacologia , Gânglios Espinais/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Neurônios/virologia , Linhagem Celular , Gânglios/virologia , Regulação Viral da Expressão Gênica , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Herpesvirus Suídeo 1/fisiologia , Humanos , Neuralgia Pós-Herpética , Transcriptoma , Ativação Viral/fisiologia , Latência Viral/efeitos dos fármacos , Latência Viral/fisiologia , Replicação Viral
5.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299208

RESUMO

Itch is a clinical problem that leaves many sufferers insufficiently treated, with over 20 million cases in the United States. This is due to incomplete understanding of its molecular, cellular, and cell-to-cell signaling mechanisms. Transient receptor potential (TRP) ion channels are involved in several sensory modalities including pain, vision, taste, olfaction, hearing, touch, and thermosensation, as well as itch. Relative to the extensive studies on TRPV1 and TRPA1 ion channels in itch modulation, TRPV4 has received relatively little research attention and its mechanisms have remained poorly understood until recently. TRPV4 is expressed in ganglion sensory neurons and a variety of skin cells. Growing evidence in the past few years strongly suggests that TRPV4 in these cells contributes to acute and chronic disease-associated itch. This review focuses on the current experimental evidence involving TRPV4 in itch under pathophysiological conditions and discusses its possible cellular and molecular mechanisms.


Assuntos
Prurido/metabolismo , Canais de Cátion TRPV/metabolismo , Doença Aguda , Animais , Doença Crônica , Humanos
6.
J Neurochem ; 151(2): 238-254, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30888683

RESUMO

Herpes simplex virus-type 1 (HSV-1) infection of sensory neurons may lead to a significant reduction in the expression of voltage-activated Na+ and Ca2+ channels, which can disrupt the transmission of pain information. Viral infection also results in the secretion of various pro-inflammatory cytokines, including interleukin (IL)-6. In this work, we tested whether IL-6 regulates the expression of Na+ and Ca2+ channels post-HSV-1 infection in ND7/23 sensory-like neurons. Our results demonstrate that HSV-1 infection causes a significant decrease in the protein expression of the Cav3.2 T-type Ca2+ channel subunit, despite increasing Cav3.2 mRNA synthesis. Neither Cav3.2 mRNA nor total protein content was affected by IL-6 treatment post-HSV-1 infection. In ND7/23 cells, HSV-1 infection caused a significant reduction in the expression of Na+ and T-type Ca2+ channels within 48 h. Exposure of ND7/23 cells to IL-6 for 24 h post-infection reverses the effect of HSV-1, resulting in a significant increase in T-type Ca2+ current density. However, Na+ currents were not restored by 24-h treatment with IL-6 post-HSV-1 infection of ND7/23 cells. The ability of IL-6 to increase the functional expression of T-type Ca2+ channels on the membrane was blocked by the inhibition of protein trafficking with brefeldin-A and ERK1/2 activation. These results indicate that IL-6 release following HSV-1 infection regulates the expression of T-type Ca2+ channels, which may alter the transmission of pain information.


Assuntos
Canais de Cálcio Tipo T/biossíntese , Herpes Simples/metabolismo , Herpesvirus Humano 1 , Interleucina-6/metabolismo , Animais , Canais de Cálcio Tipo T/genética , Linhagem Celular Tumoral , Expressão Gênica , Herpes Simples/genética , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Interleucina-6/farmacologia , Camundongos , Ratos
7.
J Neurovirol ; 23(5): 657-670, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28639215

RESUMO

Infection of sensory neurons by herpes simplex virus (HSV)-1 disrupts electrical excitability, altering pain sensory transmission. Because of their low threshold for activation, functional expression of T-type Ca2+ channels regulates various cell functions, including neuronal excitability and neuronal communication. In this study, we have tested the effect of HSV-1 infection on the functional expression of T-type Ca2+ channels in differentiated ND7-23 sensory-like neurons. Voltage-gated Ca2+ currents were measured using whole cell patch clamp recordings in differentiated ND7-23 neurons under various culture conditions. Differentiation of ND7-23 cells evokes a significant increase in T-type Ca2+ current densities. Increased T-type Ca2+ channel expression promotes the morphological differentiation of ND7-23 cells and triggers a rebound depolarization. HSV-1 infection of differentiated ND7-23 cells causes a significant loss of T-type Ca2+ channels from the membrane. HSV-1 evoked reduction in the functional expression of T-type Ca2+ channels is mediated by several factors, including decreased expression of Cav3.2 T-type Ca2+ channel subunits and disruption of endocytic transport. Decreased functional expression of T-type Ca2+ channels by HSV-1 infection requires protein synthesis and viral replication, but occurs independently of Egr-1 expression. These findings suggest that infection of neuron-like cells by HSV-1 causes a significant disruption in the expression of T-type Ca2+ channels, which can results in morphological and functional changes in electrical excitability.


Assuntos
Canais de Cálcio Tipo T/biossíntese , Herpes Simples/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/virologia , Animais , Linhagem Celular , Herpesvirus Humano 1 , Camundongos , Ratos
9.
Food Chem ; 425: 136449, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37295213

RESUMO

Accurate on-site analysis of tetracycline (TC) is of great research value for ensuring food safety and estimating environmental pollution. Herein, a smartphone-based fluorescent platform for TC detectionhas been developed based on a europium functionalized metal-organic framework (Zr-MOF/Cit-Eu). Based on the inner filter and antenna effect between Zr-MOF/Cit-Eu and TC, the probe exhibited a ratiometric fluorescent response toward TC, resulting in an emission color change from blue to red. Excellent sensing performance was achieved with a detection limit of 3.9 nM, consistent with the linear operation spanning nearly four orders of magnitude. Subsequently, visual test strips based on Zr-MOF/Cit-Eu were prepared, possessing the potential for accurate testing of TC via RGB signals. Finally, the proposed platform was well applied in actual samples with satisfied recoveries (92.27 to 110.22%). This MOF-based on-site fluorescent platform holds great potential on constructing intelligent platform for visual and quantitative detection of organic contaminants.


Assuntos
Európio , Smartphone , Corantes Fluorescentes , Tetraciclina , Antibacterianos/análise , Espectrometria de Fluorescência/métodos
10.
Front Mol Neurosci ; 16: 1160206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033371

RESUMO

There is an unmet need to identify new therapeutic targets for temporomandibular disorder (TMD) pain because current treatments are limited and unsatisfactory. TMEM100, a two-transmembrane protein, was recently identified as a regulator to weaken the TRPA1-TRPV1 physical association, resulting in disinhibition of TRPA1 activity in sensory neurons. Recent studies have also shown that Tmem100, Trpa1, and Trpv1 mRNAs were upregulated in trigeminal ganglion (TG) after inflammation of the temporomandibular joint (TMJ) associated tissues. These findings raise a critical question regarding whether TMEM100 in TG neurons is involved in TMD pain via regulating the TRPA1-TRPV1 functional interaction. Here, using two mouse models of TMD pain induced by TMJ inflammation or masseter muscle injury, we found that global knockout or systemic inhibition of TRPA1 and TRPV1 attenuated pain. In line with their increased genes, mice exhibited significant upregulation of TMEM100, TRPA1, and TRPV1 at the protein levels in TG neurons after TMD pain. Importantly, TMEM100 co-expressed with TRPA1 and TRPV1 in TG neurons-innervating the TMJ and masseter muscle and their co-expression was increased after TMD pain. Moreover, the enhanced activity of TRPA1 in TG neurons evoked by TMJ inflammation or masseter muscle injury was suppressed by inhibition of TMEM100. Selective deletion of Tmem100 in TG neurons or local administration of TMEM100 inhibitor into the TMJ or masseter muscle attenuated TMD pain. Together, these results suggest that TMEM100 in TG neurons contributes to TMD pain by regulating TRPA1 activity within the TRPA1-TRPV1 complex. TMEM100 therefore represents a potential novel target-of-interest for TMD pain.

11.
J Pain ; 24(5): 782-795, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36509176

RESUMO

Temporomandibular disorder (TMD) pain that involves inflammation and injury in the temporomandibular joint (TMJ) and/or masticatory muscle is the most common form of orofacial pain. We recently found that transient receptor potential vanilloid-4 (TRPV4) in trigeminal ganglion (TG) neurons is upregulated after TMJ inflammation, and TRPV4 coexpresses with calcitonin gene-related peptide (CGRP) in TMJ-innervating TG neurons. Here, we extended these findings to determine the specific contribution of TRPV4 in TG neurons to TMD pain, and examine whether sensory neuron-TRPV4 modulates TMD pain via CGRP. In mouse models of TMJ inflammation or masseter muscle injury, sensory neuron-Trpv4 conditional knockout (cKO) mice displayed reduced pain. Coexpression of TRPV4 and CGRP in TMJ- or masseter muscle-innervating TG neurons was increased after TMJ inflammation and masseter muscle injury, respectively. Activation of TRPV4-expressing TG neurons triggered secretion of CGRP, which was associated with increased levels of CGRP in peri-TMJ tissues, masseter muscle, spinal trigeminal nucleus, and plasma in both models. Local injection of CGRP into the TMJ or masseter muscle evoked acute pain in naïve mice, while blockade of CGRP receptor attenuated pain in mouse models of TMD. These results suggest that TRPV4 in TG neurons contributes to TMD pain by potentiating CGRP secretion. PERSPECTIVE: This study demonstrates that activation of TRPV4 in TG sensory neurons drives pain by potentiating the release of pain mediator CGRP in mouse models of TMJ inflammation and masseter muscle injury. Targeting TRPV4 and CGRP may be of clinical potential in alleviating TMD pain.


Assuntos
Artrite , Transtornos da Articulação Temporomandibular , Camundongos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Canais de Cátion TRPV , Transtornos da Articulação Temporomandibular/complicações , Células Receptoras Sensoriais/metabolismo , Dor Facial , Gânglio Trigeminal/metabolismo , Inflamação
12.
Front Mol Neurosci ; 15: 911606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504679

RESUMO

Low intraneuronal chloride in spinal cord dorsal horn (SCDH) pain relay neurons is of critical relevance for physiological transmission of primary sensory afferents because low intraneuronal chloride dictates GABA-ergic and glycin-ergic neurotransmission to be inhibitory. If neuronal chloride rises to unphysiological levels, the primary sensory gate in the spinal cord dorsal horn becomes corrupted, with resulting behavioral hallmarks of hypersensitivity and allodynia, for example in pathological pain. Low chloride in spinal cord dorsal horn neurons relies on the robust gene expression of Kcc2 and sustained transporter function of the KCC2 chloride-extruding electroneutral transporter. Based on a recent report where we characterized the GSK3-inhibitory small molecule, kenpaullone, as a Kcc2 gene expression-enhancer that potently repaired diminished Kcc2 expression and KCC2 transporter function in SCDH pain relay neurons, we extend our recent findings by reporting (i) effective pain control in a preclinical model of taxol-induced painful peripheral neuropathy that was accomplished by topical application of a TRPV4/TRPA1 dual-inhibitory compound (compound 16-8), and was associated with the repair of diminished Kcc2 gene expression in the SCDH; and (ii) potent functioning of kenpaullone as an antipruritic in a DNFB contact dermatitis preclinical model. These observations suggest that effective peripheral treatment of chemotherapy-induced painful peripheral neuropathy impacts the pain-transmitting neural circuit in the SCDH in a beneficial manner by enhancing Kcc2 gene expression, and that chronic pruritus might be relayed in the primary sensory gate of the spinal cord, following similar principles as pathological pain, specifically relating to the critical functioning of Kcc2 gene expression and the KCC2 transporter function.

13.
Mol Neurobiol ; 58(6): 2836-2850, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33515176

RESUMO

Orofacial pain, including temporomandibular joint disorders pain, trigeminal neuralgia, dental pain, and debilitating headaches, affects millions of Americans each year with significant population health impact. Despite the existence of a large body of information on the subject, the molecular underpinnings of orofacial pain remain elusive. Two decades of research has identified that transient receptor potential (TRP) ion channels play a crucial role in pathological pain. A number of TRP ion channels are clearly expressed in the trigeminal sensory system and have critical functions in the transduction and pathogenesis of orofacial pain. Although there are many similarities, the orofacial sensory system shows some distinct peripheral and central pain processing and different sensitivities from the spinal sensory system. Relative to the extensive review on TRPs in spinally-mediated pain, the summary of TRPs in trigeminally-mediated pain has not been well-documented. This review focuses on the current experimental evidence involving TRP ion channels, particularly TRPV1, TRPA1, TRPV4, and TRPM8 in orofacial pain, and discusses their possible cellular and molecular mechanisms.


Assuntos
Dor Facial/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Dor Facial/fisiopatologia , Humanos , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Neuralgia do Trigêmeo/metabolismo , Neuralgia do Trigêmeo/fisiopatologia
14.
Cell Biosci ; 10: 70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489585

RESUMO

Herpesvirus is ranked as one of the grand old members of all pathogens. Of all the viruses in the superfamily, Herpes simplex virus type 1 (HSV-1) is considered as a model virus for a variety of reasons. In a permissive non-neuronal cell culture, HSV-1 concludes the entire life cycle in approximately 18-20 h, encoding approximately 90 unique transcriptional units. In latency, the robust viral gene expression is suppressed in neurons by a group of noncoding RNA. Historically the lesions caused by the virus can date back to centuries ago. As a neurotropic pathogen, HSV-1 is associated with painful oral lesions, severe keratitis and lethal encephalitis. Transmission of pain signals is dependent on the generation and propagation of action potential in sensory neurons. T-type Ca2+ channels serve as a preamplifier of action potential generation. Voltage-gated Na+ channels are the main components for action potential production. This review summarizes not only the voltage-gated ion channels in neuropathic disorders but also provides the new insights into HSV-1 induced pain.

15.
Talanta ; 219: 121222, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887123

RESUMO

In this report, we have established a novel approach for the rapid detection of folic acid (FA) with a water soluble perylene bisimide-based probe in 100% aqueous media. The sensing performance and mechanism of this probe were investigated systematically using spectroscopic techniques. After optimizing conditions, the limit of detection in this assay is as low as 29.2 nmol/L and linear operation range is from 0.1 to 1.2 µmol/L. It relies on the supramolecular recognition between the probe and FA under the synergistic effects of non-covalent interactions such as electrostatic, hydrophobic and π-stacking interactions. Monitoring the FA concentrations in real-world samples is also confirmed.

16.
PLoS One ; 11(8): e0161119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27537375

RESUMO

Herpes Simplex Virus Type -1 (HSV-1) infections can cause serious complications such as keratitis and encephalitis. The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress. An additional objective was to study if any VOCs released from acute epithelial infection may influence subsequent neuronal infection to facilitate latency. To investigate these hypotheses, Vero cells were infected with HSV-1 and the emission of VOCs was analyzed using two-dimensional gas chromatograph/mass spectrometry (2D GC/MS). It was observed that the concentrations of gamma-butyrolactone (GBL) in particular changed significantly after a 24-hour infection. Since HSV-1 may establish latency in neurons after the acute infection, GBL was tested to determine if it exerts neuronal regulation of infection. The results indicated that GBL altered the resting membrane potential of differentiated LNCaP cells and promoted a non-permissive state of HSV-1 infection by repressing viral replication. These observations may provide useful clues towards understanding the complex signaling pathways that occur during the HSV-1 primary infection and establishment of viral latency.


Assuntos
4-Butirolactona/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Potenciais da Membrana , Neurônios/virologia , 4-Butirolactona/análogos & derivados , Animais , Chlorocebus aethiops , Cromatografia Gasosa-Espectrometria de Massas/métodos , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Humanos , Microscopia de Fluorescência , Neurônios/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Vero/virologia , Replicação Viral/fisiologia
17.
World J Gastroenterol ; 21(3): 878-87, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25624721

RESUMO

AIM: To determine the role of Notch1 and Hes1 in regulating the activation of hepatic stellate cells (HSCs) and whether Hes1 is regulated by transforming growth factor (TGF)/bone morphogenetic protein (BMP) signaling. METHODS: Immunofluorescence staining was used to detect the expression of desmin, glial fibrillary acidic protein and the myofibroblastic marker α-smooth muscle actin (α-SMA) after freshly isolated, normal rat HSCs had been activated in culture for different numbers of days (0, 1, 3, 7 and 10 d). The expression of α-SMA, collagen1α2 (COL1α2), Notch receptors (Notch1-4), and the Notch target genes Hes1 and Hey1 were analyzed by reverse transcriptase-polymerase chain reaction. Luciferase reporter assays and Western blot were used to study the regulation of α-SMA, COL1α1, COL1α2 and Hes1 by NICD1, Hes1, CA-ALK3, and CA-ALK5 in HSC-T6 cells. Moreover, the effects of inhibiting Hes1 function in HSC-T6 cells using a Hes1 decoy were also investigated. RESULTS: The expression of Notch1 and Hes1 mRNAs was significantly down-regulated during the culture of freshly isolated HSCs. In HSC-T6 cells, Notch1 inhibited the promoter activities of α-SMA, COL1α1 and COL1α2. On the other hand, Hes1 enhanced the promoter activities of α-SMA and COL1α2, and this effect could be blocked by inhibiting Hes1 function with a Hes1 decoy. Furthermore, co-transfection of pcDNA3-CA-ALK3 (BMP signaling activin receptor-like kinase 3) and pcDNA3.1-NICD1 further increased the expression of Hes1 compared with transfection of either vector alone in HSC-T6 cells, while pcDNA3-CA-ALK5 (TGF-ß signaling activin receptor-like kinase 5) reduced the effect of NICD1 on Hes1 expression. CONCLUSION: Selective interruption of Hes1 or maintenance of Hes1 at a reasonable level decreases the promoter activities of α-SMA and COL1α2, and these conditions may provide an anti-fibrotic strategy against hepatic fibrosis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Células Estreladas do Fígado/metabolismo , Proteínas de Homeodomínio/metabolismo , Cirrose Hepática/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Células Estreladas do Fígado/patologia , Proteínas de Homeodomínio/genética , Cirrose Hepática/genética , Cirrose Hepática/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptor Notch1/genética , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fatores de Tempo , Fatores de Transcrição HES-1 , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA