Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Environ Manage ; 348: 119387, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879174

RESUMO

Labile organic carbon (LOC) input strongly affects soil organic matter (SOM) dynamics, including gains and losses. However, it is unclear how redox fluctuations regulate these processes of SOM decomposition and formation induced by LOC input. The objective of this study was to explore the impacts of LOC input on SOM turnover under different redox conditions. Soil samples were collected in a subtropical forest. A single pulse of 13C-labeled glucose (i.e., LOC) was applied to the soil. Soil samples were incubated for 40 days under three redox treatments, including aerobic, anoxic, and 10-day aerobic followed by 10-day anoxic conditions. Results showed that LOC input affected soil priming and 13C-SOM accumulation differently under distinct redox conditions by altering the activities of various microorganisms. 13C-PLFAs (phospholipid fatty acids) were analyzed to determine the role of microbial groups in SOM turnover. Increased activities of fungi and gram-positive bacteria (i.e., the K-strategists) by LOC input could ingest metabolites or residues of the r-strategists (e.g., gram-negative bacteria) to result in positive priming. Fungi could use gram-negative bacteria to stimulate priming intensity via microbial turnover in aerobic conditions first. Reduced activities of K-strategists as a result of the aerobic to anoxic transition decreased priming intensity. The difference in LOC retention in SOM under different redox conditions was mainly attributable to 13C-particulate organic carbon (13C-POC) accumulation. Under aerobic conditions, fungi and gram-positive bacteria used derivatives from gram-negative bacteria to reduce newly formed POC. However, anoxic conditions were not conducive to the uptake of gram-negative bacteria by fungi and gram-positive bacteria, favoring SOM retention. This work indicated that redox-regulated microbial activities can control SOM decomposition and formation induced by LOC input. It is extremely valuable for understanding the contribution of soil affected by redox fluctuations to the carbon cycle.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Florestas , Carbono/química , Oxirredução , Fungos/metabolismo
2.
Microb Cell Fact ; 16(1): 214, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183329

RESUMO

BACKGROUND: Most endophytic bacteria in consortia, which provide robust and broad metabolic capacity, are attractive for applications in plant metabolic engineering. The aim of this study was to investigate the effects of engineered endophytic bacterial strains on rice sprout ethylene level and growth under saline stress. A protocol was developed to synthesize engineered strains by expressing bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on cells of endophytic Enterobacter sp. E5 and Kosakonia sp. S1 (denoted as E5P and S1P, respectively). RESULTS: Results showed that ACC deaminase activities of the engineered strains E5P and S1P were significantly higher than those of the wild strains E5 and S1. About 32-41% deaminase was expressed on the surface of the engineered strains. Compared with the controls without inoculation, inoculation with the wild and engineered strains increased the deaminase activities of sprouts. Inoculation with the engineered strains increased 15-21% more deaminase activities of sprouts than with the wild strains, and reduced the ethylene concentrations of sprouts more significantly than with wild strains (P < 0.05). Inoculation with the wild and engineered strains promoted the growth of sprouts, while the promoting effects were more profound with the engineered strains than with the wild strains. The engineered strains improved saline resistance of sprouts under salt concentrations from 10 to 25 g L-1. The engineered strains promoted longer roots and shoots than the wild strains under the salt stresses, indicating that the ACC deaminases on the endophytic bacterial cells could result in plant-produced ACC degradation and inhibit plant ethylene formation. CONCLUSIONS: The protocols of expressing enzymes on endophytic bacterial cells showed greater potentials than those of plant over-expressed enzymes to increase the efficiency of plant metabolic pathways.


Assuntos
Carbono-Carbono Liases/genética , Técnicas de Visualização da Superfície Celular/métodos , Enterobacteriaceae/metabolismo , Etilenos/biossíntese , Oryza/metabolismo , Cloreto de Sódio/metabolismo , Endófitos/metabolismo , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Etilenos/análise , Etilenos/metabolismo , Engenharia Metabólica/métodos , Oryza/microbiologia , Raízes de Plantas/microbiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico
3.
Appl Microbiol Biotechnol ; 100(22): 9699-9707, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27562469

RESUMO

The aim of this study was to investigate the effects of single and mixed culture of denitrifying fungi, bacteria, and actinobacteria on nitrogen removal and N2O emission in treatment of wastewater. Denitrifying endophytes of Pseudomonas sp. B2, Streptomyces sp. A9, and Fusarium sp. F3 isolated from rice plants were utilized for treatment of synthetic wastewater containing nitrate and nitrite. Experiments were conducted under shaking and static conditions. Results showed that under the static condition, more than 97 % of nitrate removal efficiencies were reached in all the treatments containing B2. The nitrate removal rates within the first 12 h in the treatments of B2, B2+A9, B2+F3, and B2+A9+F3 were 7.3, 9.8, 11, and 11 mg L-1 h-1, respectively. Under the shaking condition, 100 % of nitrite was removed in all the treatments containing B2. The presence of A9 and F3 with B2 increased the nitrite removal rates under both the shaking and static conditions. Compared to the B2 system, the mixed systems of B2+A9, B2+F3, and B2+A9+F3 reduced N2O emission (78.4 vs. 19.4, 1.80, and 0.03 µM in 4 weeks, respectively). Our results suggested that B2 is an important strain that enhances nitrogen removal from wastewater. Mixed cultures of B2 with A9 and F3 can remove more nitrate and nitrite from wastewater and reduce nitrite accumulation and N2O emission in the denitrification process.


Assuntos
Bactérias/metabolismo , Desnitrificação , Fungos/metabolismo , Nitrogênio/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia , Consórcios Microbianos , Compostos de Nitrogênio/metabolismo
4.
Appl Microbiol Biotechnol ; 100(15): 6917-6926, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27100531

RESUMO

Microorganisms play a key role in removal of pollutants in constructed wetlands (CWs). The aim of this study was to investigate the composition and diversity of microbes in a full-scale integrated constructed wetland system and examine how microbial assemblages were shaped by the structures and physicochemical properties of the sediments. The microbial assemblages were determined using 16S rRNA high-throughput sequencing. Results showed that the microbial phenotypes were more diverse in the system than in single CWs. The genera of Zoogloea, Comamonas, Thiobacillus, Nitrosospira, Denitratisoma, Azonexus, and Azospira showed relatively high abundances, which contributed to the removal of organic matter and nitrogen. The interactions among the three CWs in series acted a key role in the increase of phylogenetic diversity and high percentage of shared operational taxonomic units. In the system, some core microbes always existed even with the changing environment. Redox potential and NH4-N were the important factors affecting the overall microbial community patterns. Total organic carbon had a relatively high impact on some denitrifiers. The results from this study should be useful to better understand the microbial mechanism of wastewater treatment in integrated constructed wetland systems.


Assuntos
Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Águas Residuárias/microbiologia , Microbiologia da Água , Archaea/genética , Bactérias/genética , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Áreas Alagadas
5.
Environ Sci Technol ; 48(17): 10482-8, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25111871

RESUMO

Methanogenesis inhibition is essential for the improvement of hydrogen (H2) yield and energy recovery in the microbial electrolysis cell (MEC). In this study, ultraviolet (UV) irradiation was proposed as an efficient method for methanogenesis control in a single chamber MEC. With 30 cycles of operation with UV irradiation in the MEC, high H2 concentrations (>91%) were maintained, while without UV irradiation, CH4 concentrations increased significantly and reached up to 94%. In the MEC, H2 yields ranged from 2.87 ± 0.03 to 3.70 ± 0.11 mol H2/mol acetate with UV irradiation and from 3.78 ± 0.12 to 0.03 ± 0.004 mol H2/mol acetate without UV irradiation. Average energy efficiencies from the UV-irradiated MEC were 1.5 times of those without UV irradiation. Energy production from the MEC without UV irradiation was a negative energy yield process because of large amount of CH4 produced over time, which was mainly attributable to cathodic hydrogenotrophic methanogenesis. Our results clearly showed that UV irradiation could effectively inhibit methanogenesis and improve MEC performance to produce H2.


Assuntos
Fontes de Energia Bioelétrica , Eletrólise , Hidrogênio/metabolismo , Metano/biossíntese , Raios Ultravioleta , Acetatos/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/efeitos da radiação , Biocombustíveis/microbiologia , Biomassa , Dióxido de Carbono/metabolismo , Contagem de Colônia Microbiana , Eletricidade , Eletrodos
6.
Appl Microbiol Biotechnol ; 98(20): 8729-36, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24928657

RESUMO

The aim of this study was to investigate the potential to remove chromium (Cr) from aqueous solutions using the fruiting body of Auricularia polytricha. Batch experiments were conducted under various conditions, and different models were used to characterize the biosorption process. Results showed that, for both fresh and dried fruiting bodies of A. polytricha, removal efficiencies of Cr(VI) and total Cr reached maximum values at pH values of 1 and 2, respectively. The process of Cr(VI) removal by A. polytricha included the sorption process as well as the reduction of Cr(VI) to Cr(III). Spectra of X-ray photoelectron spectroscopy of the biosorbent revealed that most of the Cr loaded on the biomass surface was in the trivalent form. The Freundlich model fitted the isotherm process better than the Langmuir model in the concentration range examined. The pseudo-second-order model well described the adsorption process of Cr onto the biomass. The biosorption capacity of Cr(VI) by fruiting bodies was much higher than that by most of other biosorbents reported. The results suggest that the fruiting bodies of A. polytricha should be a promising biomaterial for Cr removal from water contaminated by the heavy metal.


Assuntos
Basidiomycota/metabolismo , Cromo/metabolismo , Carpóforos/metabolismo , Purificação da Água/métodos , Adsorção , Cromo/isolamento & purificação , Concentração de Íons de Hidrogênio , Modelos Teóricos , Oxirredução , Espectroscopia Fotoeletrônica , Poluentes da Água/isolamento & purificação , Poluentes da Água/metabolismo
7.
World J Microbiol Biotechnol ; 30(3): 1085-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24136343

RESUMO

To take full advantage of biochar as a soil amendment, the objective of this study was to investigate the effects of biochar addition on soil bacterial and fungal diversity and community composition. Incubation experiments with a forest soil (a red oxidized loam soil) with and without biochar amendment were conducted for 96 days. The culture-independent molecular method was utilized to analyze soil bacterial and fungal species after the incubation experiments. Results showed that bacteria and fungi responded differently to the biochar addition during the short-term soil incubation. Twenty four and 18 bacterial genara were observed in the biochar amended and unamended soils, respectively, whereas 11 and 8 fungal genera were observed in the biochar amended and unamended soils, respectively. Microbial taxa analysis indicated that the biochar amendment resulted in significant shifts in both bacterial and fungal taxa during the incubation period. The shift for bacteria occurred at the genus and phylum levels, while for fungi only at the genus level. Specific taxa, such as Actinobacteria of bacteria and Trichoderma and Paecilomyces of fungi, were enriched in the biochar amended soil. The results reveal a pronounced impact of biochar on soil microbial community composition and an enrichment of key bacterial and fungal taxa in the soil during the short time period.


Assuntos
Bactérias/classificação , Biota , Carvão Vegetal/metabolismo , Fungos/classificação , Microbiologia do Solo , Solo/química , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/genética , Fungos/isolamento & purificação , Dados de Sequência Molecular , Análise de Sequência de DNA
8.
Environ Sci Technol ; 46(4): 2467-72, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22242642

RESUMO

By combining the microbial electrolysis cell and the microbial desalination cell, the microbial electrolysis desalination cell (MEDC) becomes a novel device to desalinate salty water. However, several factors, such as sharp pH decrease and Cl(-) accumulation in the anode chamber, limit the MEDC development. In this study, a microbial electrolysis desalination and chemical-production cell (MEDCC) was developed with four chambers using a bipolar membrane. Results showed that the pH in the anode chamber of the MEDCC always remained near 7.0, which greatly enhanced the microbial activities in the cell. With applied voltages of 0.3-1.0 V, 62%-97% of Coulombic efficiencies were achieved from the MEDCC, which were 1.5-2.0 times of those from the MEDC. With 10 mL of 10 g/L NaCl in the desalination chamber, desalination rates of the MEDCC reached 46%-86% within 18 h. Another unique feature of the MEDCC was the simultaneous production of HCl and NaOH in the cell. With 1.0 V applied voltage, the pH values at 18 h in the acid-production chamber and cathode chamber were 0.68 and 12.9, respectively. With the MEDCC, the problem with large pH changes in the anode chamber was resolved, and products of the acid and alkali were obtained.


Assuntos
Salinidade , Purificação da Água/métodos , Fontes de Energia Bioelétrica , Eletrólise , Ácido Clorídrico/química , Água do Mar/química , Hidróxido de Sódio/química
9.
Appl Microbiol Biotechnol ; 96(3): 829-40, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22234535

RESUMO

The aim of this study was to investigate the biosorption characteristics of Cd(2+), Cu(2+), and Pb(2+) by the fruiting body of jelly fungus Auricularia polytricha. Batch experiments were conducted to characterize the kinetics, equilibrium, and mechanisms of the biosorption process. Optimum values of pH 5, biomass dosage 4 g L(-1), and contact time 60 min provided maximum biosorption capacities of A. polytricha for Cd(2+), Cu(2+), and Pb(2+) of 63.3, 73.7, and 221 mg g(-1), respectively. The maximum desorption was achieved using 0.05 mol L(-1) HNO(3) as an elute. The fruiting body was reusable at least for six cycles of operations. The pseudo-second-order model was the best to describe the biosorption processes among the three kinetic models tested. Freundlich and Dubinin-Radushkevich models fitted the equilibrium data well, indicating a heterogeneous biosorbent surface and the favorable chemisorption nature of the biosorption process. A Fourier transform infrared spectroscopy analysis indicated that carboxyl, amine/hydroxyl, amino, phosphoryl, and C-N-C were the main functional groups to affect the biosorption process. Synergistic ion exchange and surface complexation were the dominant mechanisms in the biosorption process. The present work revealed the potential of jelly fungus (fruiting body of A. polytricha) to remove toxic heavy metals from contaminated water.


Assuntos
Basidiomycota/metabolismo , Cádmio/metabolismo , Cátions Bivalentes/metabolismo , Cobre/metabolismo , Chumbo/metabolismo , Poluentes Químicos da Água/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Concentração de Íons de Hidrogênio , Modelos Teóricos , Soluções , Água/química
10.
Sci Total Environ ; 833: 155190, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421490

RESUMO

This study aimed to reveal the synergistic effect of bioanode and biocathode on nitrobenzene (NB) removal with different microbial community structures and functions. Single-chamber bioelectrochemical reactors were constructed and operated with different initial concentrations of NB and glucose as the substrate. With the synergistic effect of biocathode and bioanode, NB was completely removed within 8 h at a kinetic rate constant of 0.8256 h-1, and high conversion rate from NB to AN (92%) was achieved within 18 h. The kinetic rate constant of NB removal was linearly correlated with the maximum current density and total coulombs (R2 > 0.95). Increase of glucose and NB concentrations had significantly positive and negative effects, respectively, on the NB removal kinetics (R2 > 0.97 and R2 > 0.93, respectively). Geobacter sp. and Enterococcus sp. dominated in the bioanode and biocathode, respectively. The presence of Klebsiella pneumoniae in the bioanode was beneficial for Geobacter species to produce electricity and to alleviate the NB inhibition. As one of the dominant species at the biocathode, Methanobacterium formicicum has the ability of nitroaromatics degradation according to KEGG analysis, which played a crucial role for NB reduction. Fermentative bacteria converted glucose into volatile fatty acids or H2, to provide energy sources to other species (e.g., Geobacter sulfurreducens and Methanobacterium formicicum). The information from this study is useful to optimize the bioelectrocatalytic system for nitroaromatic compound removal.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Eletricidade , Eletrodos , Glucose , Nitrobenzenos/metabolismo
11.
Sci Total Environ ; 836: 155724, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35523344

RESUMO

The aim of this study was to investigate the ecological role of quorum-sensing signaling molecule on the autotrophic biocathode for CO2 reduction and acetate synthesis. As a typical quorum-sensing signaling molecule, N-Hexanoyl-L-homoserine lactone (C6HSL) was used to regulate the construction of cathode biofilm. Results showed that the maximum acetate production from CO2 reduction improved by 94.8%, and the maximum Faraday efficiency of the microbial electrosynthesis system enhanced by 71.7%, with the regulation of C6HSL. Electrochemical analyses indicated that higher electrochemical activity and lower charge resistance of biocathode were obtained with C6HSL than without C6HSL. Confocal laser scanning microscopy and electron inhibitor experiment suggested that exogenous C6HSL increased living biomass in the biofilm and facilitated the electron transfer pathway related to NADH dehydrogenase-CoQ and proton motive force. With the C6HSL regulation, the relative abundance of hydrogen producers (e.g., Desulfovibrio and Desulfomicrobium) increased, contributing to the improved performance of autotrophic biocathode.


Assuntos
Dióxido de Carbono , Percepção de Quorum , 4-Butirolactona/análogos & derivados , Acetatos/química , Dióxido de Carbono/química
12.
Sci Total Environ ; 831: 154798, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35367555

RESUMO

The aim of this study was to establish the relationship between spatial distribution of Geobacter and electric intensity in the microbial electrolysis desalination and chemical-production cell (MEDCC) and to investigate the effect of enlarged volumetric anode on the performance of MEDCC. The MEDCC was constructed with nine carbon brush anodes (length × diameter = 11 cm × 3 cm) as enlarged volumetric anode, and operated by feeding with 1 g/L acetate as substrate and 35 g/L NaCl as artificial seawater under the applied voltages of 1.2-4.5 V. Spatial distribution of Geobacter in the anodic biofilm was determined according to the bacterial community analysis on 27 biofilm samples from the top, middle and bottom layers of anodes (i.e., with distance of 4.5, 10, and 15.5 cm to the cathode, respectively). Results showed that the enlarged volumetric anode significantly improved the performance of MEDCC. The maximum desalination rate and current density reached 338.5 ± 21.8 mg/L∙h and 55.7 ± 3.7 A/m2 in the MEDCC, respectively. The electric intensity values decreased with the distance from the anode to the cathode and formed an uneven distribution in the anode chamber. The samples in the top layer of anodes had the highest average 16S rRNA gene copy number of Geobacter of 1.55 × 107 copies/µL, which was 18 times higher than that in the bottom layer of anodes. A linear relation was established between the spatial distribution of Geobacter and electric intensity (R2 = 0.994-0.999). The electric intensity gradient created the uneven spatial distribution of Geobacter in the biofilms of volumetric anode. Results from this study could be useful to enrich Geobacter in the anodic biofilm thus to improve the performance of MEDCC.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Fontes de Energia Bioelétrica/microbiologia , Biofilmes , Eletrodos , Eletrólise , RNA Ribossômico 16S
13.
Sci Total Environ ; 823: 153789, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150675

RESUMO

The aim of this study was to investigate the feasibility of sulfate removal and elemental sulfur (S0) recovery in the single-chamber bioelectrochemical system (S-BES). The performance of S-BES was compared with that of dual-chamber bioelectrochemical system (D-BES). The S-BES was constructed with graphite felt as the anode and graphite brush as the cathode. The D-BES was constructed with proton exchange membrane as the separator between anode and cathode chambers. With an applied voltage of 1.0 V and 1 g/L acetate as the substrate, the S-BES and D-BES were tested by feeding with 480 mg/L SO42- in the phosphate buffer. Results showed that the maximum current density of 37.6 ± 4.5 mA/m3 was reached in the S-BES, which was higher than that in the D-BES (i.e., 22.2 ± 2.6 mA/m3). The SO42- removal was much higher in the S-BES than in the D-BES (99.5% vs. 57.2%). In the effluent and the electrodes of S-BES, S0 was identified with Raman and X- Ray diffraction analyses. The S0 recovery on the anode was 13.7 times of that on the cathode of S-BES, indicating that S0 was mainly produced on the anode. The measured total S0 recovery reached 67.5% in the S-BES. High relative abundance of Desulfurella (47.1%) and Geobacter (26.1%) dominated the community in the anode biofilm of S-BES. The excellent performance of S-BES may be attributed to the neutral pH in the solution and the synergistic reaction between the anode and cathode. Results from this study should be useful to enhance the S-BES applications in treating wastewater containing sulfate.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Eletrodos , Sulfatos , Enxofre , Águas Residuárias
14.
Sci Total Environ ; 780: 146597, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030325

RESUMO

The aim of this study was to investigate the performance of single-chamber MEC under applied voltages higher than that for water electrolysis. With different acetate concentrations (1.0-2.0 g/L), the MEC was tested under applied voltages from 0.8 to 2.2 V within 2600 h (54 cycles). Results showed that the MEC was stably operated for the first time within 20 cycles under 2.0 and 2.2 V, compared with the control MEC with significant water electrolysis. The maximum current density reached 27.8 ± 1.4 A/m2 under 2.0 V, which was about three times as that under 0.8 V. The anode potential in the MEC could be kept at 0.832 ± 0.110 V (vs. Ag/AgCl) under 2.2 V, thus without water electrolysis in the MEC. High applied voltage of 1.6 V combined with alkaline solution (pH = 11.2) could result in high hydrogen production and high current density. The maximum current density of MEC at 1.6 V and pH = 11.2 reached 42.0 ± 10.0 A/m2, which was 1.85 times as that at 1.6 V and pH = 7.0. The average hydrogen content reached 97.2% of the total biogas throughout all the cycles, indicating that the methanogenesis was successfully inhibited in the MEC at 1.6 V and pH = 11.2. With high hydrogen production rate and current density, the size and investment of MEC could be significantly reduced under high applied voltages. Our results should be useful for extending the range of applied voltages in the MEC.


Assuntos
Fontes de Energia Bioelétrica , Eletrólise , Acetatos , Biocombustíveis , Eletrodos , Hidrogênio
15.
Chemosphere ; 265: 129088, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33280848

RESUMO

The aim of this study was to investigate pH effect on stratification of bacterial community in cathodic biofilm of the microbial fuel cell (MFC) under alkaline conditions. A single-chamber MFC with air-cathode was operated with 0.8 g/L maltodextrin and bicarbonate buffer solutions under pH values of 8.5, 9.5, and 10.5, respectively. The cathodic biofilms were characterized by linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), confocal laser scanning microscopy (CLSM), freezing microtome and high-throughput sequencing analysis on bacterial communities, respectively. Results showed that the maximum power densities in the MFC increased with the pH values and reached 1221 ± 96 mW/m2 at pH = 10.5 during ∼30 d of operation. With different pH values, the composition and relative abundance of bacterial community significantly changed in the bottom (0-50 µm), middle (50-100 µm), and top (100-150 µm) layers of the cathodic biofilm. With pH = 10.5, aerobic bacteria accounted for 12%, 13%, and 34% of the bacterial community in the top, middle, and bottom layers, respectively. The amount of anaerobic bacteria in the top and middle layers (i.e., 52%, and 50% of the bacterial community, respectively) was higher than that in the bottom layer (22%). The distribution of aerobic and anaerobic bacteria showed a "valley-peak" structure within the layers. The high CO32- concentration facilitates the hydroxyl transfer and the neutralization in the anode of the MFC under high alkali conditions. The results from this study should be useful to develop new catalyst and cathode in the MFC.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Eletrodos , Concentração de Íons de Hidrogênio , Polissacarídeos
16.
Appl Microbiol Biotechnol ; 88(4): 997-1005, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20717663

RESUMO

In this study, dried and humid fruiting bodies of Tremella fuciformis and Auricularia polytricha were examined as cost-effective biosorbents in treatment of heavy metals (Cd(2+), Cu(2+), Pb(2+), and Zn(2+)) in aqueous solution. The humid T. fuciformis showed the highest capacity to adsorb the four metals in the multi-metal solutions. The Pb(2+) adsorption rates were 85.5%, 97.8%, 84.8%, and 91.0% by dried T. fuciformis, humid T. fuciformis, dried A. polytricha, and humid A. polytricha, respectively. The adsorption amount of Pb(2+) by dried and humid T. fuciformis in Cd(2+) + Pb(2+), Cu(2+) + Pb(2+), Pb(2+) + Zn(2+), Cd(2+) + Cu(2+) + Pb(2+), and Cd(2+) + Zn(2+) + Pb(2+) solutions were not lower than that in Pb(2+) solutions. The results suggested that in humid T. fuciformis, Cd(2+), Cu(2+), and Zn(2+) promoted the Pb(2+) adsorption by the biomass. In the multi-metal solutions of Cd(2+) + Cu(2+) + Pb(2+) + Zn(2+), the adsorption amount and rates of the metals by all the test biosorbents were in the order of Pb(2+) > Cu(2+) > Zn(2+) > Cd(2+). Compared with the pseudo first-order model, the pseudo second-order model described the adsorption kinetics much better, indicating a two-step biosorption process. The present study confirmed that fruiting bodies of the jelly fungi should be useful for the treatment of wastewater containing Cd(2+), Cu(2+), Pb(2+), and Zn(2+).


Assuntos
Basidiomycota/metabolismo , Carpóforos/metabolismo , Metais Pesados/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Cinética , Modelos Biológicos , Eliminação de Resíduos Líquidos , Purificação da Água
17.
Artigo em Inglês | MEDLINE | ID: mdl-20390865

RESUMO

Quinoline has become one of the common contaminants in groundwater and soil, discharged from the process of coal tar distillation and creosote wood preservation, as well as fossil fuel facilities. The aim of this study was to investigate the feasibility of electricity production from and biodegradation of quinoline in the microbial fuel cell (MFC). Experiments were conducted in the MFC using an initial 500 mg/L quinoline with different glucose concentrations as substrates. Results showed maximum voltages of 558, 469, and 328 mV for the substrates with ratios of quinoline to glucose of 1:1, 5:3, 5:1, respectively. The MFC accomplished complete quinoline biodegradation within 6 h. Experiments were then conducted using 200 mg/L quinoline only as the MFC fuel, resulting in the maximal voltage of 145 mV and maximal power density of 16.4 mW/m(2). GC/MS analyses showed that 2(1H)quinolinone accumulated in the anode solution and later disappeared. The results clearly demonstrated the feasibility to use quinoline as the MFC fuel to generate electricity and enhance quinoline biodegradation simultaneously.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Quinolinas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-20563913

RESUMO

Veratryl alcohol (VA) is a product from the biodegradation of lignocellulosic biomass. The objective of this study was to explore the possibility whether VA could be used as the fuel of the microbial fuel cell (MFC) to generate power. Two types of MFCs, a two-chamber MFC and a single-chamber air-cathode MFC, were set up for experiments. In the two-chamber MFC, average maximum current outputs higher than 700 microA were obtained using various mixtures of glucose and VA as the fuel. The highest power density of 35.17 W m(-3) was achieved using the mixture of 1000 mg L(-1) glucose and 50 mg L(-1) VA as the fuel. With 500 mg L(-1) VA as the fuel in the MFC, we obtained an average maximum current output of 181 microA. In the single-chamber MFC, the maximum current output reached up to 178 microA with 500 mg L(-1) VA in the fed-batch mode and the maximum CE reached 23.77% with 100 mg L(-1) VA. At the end of all operation cycles of the MFCs, the glucose and VA were undetectable in the solution, and the removal efficiencies of COD were between 75% and 88%. The denaturing gradient gel electrophoresis profiles of 16S rRNA gene indicated that the dominant species on the anode biofilm did not change significantly with the different substrates, but the abundance of some species increased greatly. The scanning electron micrographs showed that the most abundant bacteria on the electrode were bacilli. The dominant species belonged to bacteroidetes and proteobacterium.


Assuntos
Álcoois Benzílicos/química , Fontes de Energia Bioelétrica/microbiologia
19.
Chemosphere ; 251: 126381, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443232

RESUMO

In this study, carbon quantum dots (CQDs) were used to decorate a TiO2/g-C3N4 (TCN) film electrode. The morphological, optical, and electrochemical properties of the TiO2/g-C3N4/CQDs nanorod arrays (TCNC NRAs) film were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electrochemical impedance spectroscopy (EIS). The improved optical properties, photoelectrochemical properties and photoelectrocatalytic (PEC) performance of photoanode can be observed by doping CQDs onto the TCN NRAs film. Compared with TiO2 NRAs and TCN NRAs, the narrower band gap of 2.47 eV and longer lifetime of photoinduced electron-hole pairs were observed in the TCNC NRAs. Under visible light irradiation and a bias voltage of 1.2 V, the photocurrent density and 1,4-dioxane (1,4-D) removal rate of PEC process with TCNC NRAs electrode reached 0.16 mA/cm2 and 77.9%, respectively, which was 2.5 times and 1.5 times of that with TCN NRAs electrode. TCNC NRAs electrode could keep >75% of the 1,4-D removal rate during five cycles tests. High PEC performance with TCNC NRAs electrode could be attributed to the enhanced charge separation and the change of electron transfer mechanism from typical heterojunction to Z-scheme, which may increase the active species production and change the dominant reactive species from O2·- to ·OH. Our experimental results should be useful for studying the degradation of 1,4-D and developing efficient PEC materials.


Assuntos
Dioxanos/química , Pontos Quânticos/química , Carbono , Eletrodos , Luz , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotubos/química , Titânio
20.
Bioresour Technol ; 309: 123322, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32305841

RESUMO

Extracellular electron transfer (EET) is a significant pathway to transport electrons between bacteria and electrode in microbial electrosynthesis systems (MESs). To enhance EET in the MES, a high-conductivity polymer, polypyrrole (PPy), was coated on the surface of mixed culture acetogens in situ and the PPy-coated bacteria were inoculated on the cathode of MES. The charge transfer resistance of PPy-coated biocathode was 33%-70% of that with PPy-uncoated. Acetate production rate and Faradic efficiency in PPy-coated biocathodes increased by 3 to 6 times. After 960 h operation, Acetobacterium, Desulfovibrio, and Acinetobacter dominate the community on the coated and uncoated biocathode. Quinone loop and NADH dehydrogenase to ubiquinone were involved in electron transfer pathway of biocathode and stimulated by PPy coating. Low-level expression of C-type cytochromes on biocathode indicated its less important role in inward EET. The study provided useful information for applications of high-conductivity chemicals in microbial electrosynthesis.


Assuntos
Elétrons , Polímeros , Dióxido de Carbono , Eletrodos , Transporte de Elétrons , Pirróis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA