Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Cell Physiol ; 239(5): e31255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501341

RESUMO

Proteolysis Targeting Chimeras (PROTACs) represent a significant advancement in therapeutic drug development by leveraging the ubiquitin-proteasome system to enable targeted protein degradation, particularly impacting oncology. This review delves into the various types of PROTACs, such as peptide-based, nucleic acid-based, and small molecule PROTACs, each addressing distinct challenges in protein degradation. It also discusses innovative strategies like bridged PROTACs and conditional switch-activated PROTACs, offering precise targeting of previously "undruggable" proteins. The potential of PROTACs extends beyond oncology, with ongoing research and technological advancements needed to maximize their therapeutic potential. Future progress in this field relies on interdisciplinary collaboration and the integration of advanced computational tools to open new treatment avenues across various diseases.


Assuntos
Complexo de Endopeptidases do Proteassoma , Quimera de Direcionamento de Proteólise , Proteólise , Animais , Humanos , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Ubiquitina/metabolismo
2.
Pharmacol Res ; 194: 106854, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460003

RESUMO

Mixed hyperlipidemia, characterized by high levels of triglycerides and cholesterol, is a key risk factor leading to atherosclerosis and other cardiovascular diseases. Existing clinical drugs usually only work on a single indicator, decreasing either triglyceride or cholesterol levels. Developing dual-acting agents that reduce both triglycerides and cholesterol remains a great challenge. Pancreatic triglyceride lipase (PTL) and Niemann-Pick C1-like 1 (NPC1L1) have been identified as crucial proteins in the transport of triglycerides and cholesterol. Here, cinaciguat, a known agent used in the treatment of acute decompensated heart failure, was identified as a potent dual inhibitor targeting PTL and NPC1L1. We presented in vitro evidence from surface plasmon resonance analysis that cinaciguat interacted with PTL and NPC1L1. Furthermore, cinaciguat exhibited potent PTL-inhibition activity. Fluorescence-labeled cholesterol uptake analysis and confocal imaging showed that cinaciguat effectively inhibited cholesterol uptake. In vivo evaluation showed that cinaciguat significantly reduced the plasma levels of triglycerides and cholesterol, and effectively alleviated high-fat diet-induced intestinal microbiota dysbiosis and metabolic disorders. These results collectively suggest that cinaciguat has the potential to be further developed for the therapy of mixed hyperlipidemia.


Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Lipidoses , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Hiperlipidemias/tratamento farmacológico , Disbiose/tratamento farmacológico , Colesterol/metabolismo , Triglicerídeos , Lipase , Ezetimiba
3.
J Org Chem ; 88(5): 3185-3192, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36812072

RESUMO

Mass spectrometry (MS)-based metabolic profiling of the endophytic fungus Chaetomium nigricolor F5 guided the isolation of five novel cytochalasans, chamisides B-F (1-5), and two known ones, chaetoconvosins C and D (6 and 7). Their structures including stereochemistry were unambiguously determined by MS, nuclear magnetic resonance, and single-crystal X-ray diffraction analyses. Compounds 1-3 share a new 5/6/5/5/7-fused pentacyclic skeleton in cytochalasans and are appropriately proposed to be the key biosynthetic precursors of co-isolated cytochalasans with a 6/6/5/7/5, 6/6/5/5/7, or 6/6/5 ring system. Remarkably, compound 5 with a relatively flexible side chain showed promising inhibition activity against the cholesterol transporter protein Niemann-Pick C1-like 1 (NPC1L1), expanding the function of cytochalasans.


Assuntos
Sordariales , Estrutura Molecular , Fungos , Citocalasinas/farmacologia , Citocalasinas/química
4.
Bioorg Chem ; 137: 106576, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37182421

RESUMO

Cancer is one of the leading causes of death worldwide. Although great progress has been achieved in cancer diagnosis and treatment, novel therapies are still urgently needed to increase the efficacy and reduce the side effects of conventional therapies. Personalized medicine involves administering patients drugs that are specific to the characteristics of their tumors, and has significantly reduced side effects and increased overall survival rates. Multifunctional theranostic drugs are designed to combine diagnostic and therapeutic functions into a single molecule, which reduces the number of drugs administered to patients and increases patient compliance, and have shown great potential in propelling personalized medicine. This review focuses on multifunctional small-molecule theranostic agents for tumor-specific imaging and targeted chemotherapy, with a particular emphasis placed on highlighting design strategies and application in vitro or in vivo. The challenges and future perspectives of multifunctional small molecules are also discussed.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
5.
Bioorg Chem ; 136: 106554, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37094481

RESUMO

Small molecule theranostic agents for tumor treatment exhibited triadic properties in tumor targeting, imaging, and therapy, which have attracted increasing attention as a potential complement for, or improved to, classical small molecule antitumor drugs. Photosensitizer have dual functions of imaging and phototherapy, and have been widely used in the construction of small molecule theranostic agents over the last decade. In this review, we summarized representative agents that have been studied in the field of small molecule theranostic agents based on photosensitizer in the last decade, and highlighted their characteristics and application in tumor-targeted monitoring and phototherapy. The challenges and future perspectives of photosensitizers in building small molecule theranostic agents for diagnosis and therapy of tumors were also discussed.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Medicina de Precisão , Fototerapia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
6.
Bioorg Chem ; 136: 106550, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121105

RESUMO

The drugs targeting the PD-1/PD-L1 pathway have gained abundant clinical applications for cancer immunotherapy. However, only a part of patients benefit from such immunotherapy. Thus, brilliant novel tactic to increase the response rate of patients is on the agenda. Nanocarriers, particularly the rationally designed intelligent delivery systems with controllable therapeutic agent release ability and improved tumor targeting capacity, are firmly recommended. In light of this, state-of-the-art nanocarriers that are responsive to tumor-specific microenvironments (internal stimuli, including tumor acidic microenvironment, high level of GSH and ROS, specifically upregulated enzymes) or external stimuli (e.g., light, ultrasound, radiation) and release the target immunomodulators at tumor sites feature the advantages of increased anti-tumor potency but decreased off-target toxicity. Given the fantastic past achievements and the rapid developments in this field, the future is promising. In this review, intelligent delivery platforms targeting the PD-1/PD-L1 axis are attentively appraised. Specifically, mechanisms of the action of these stimuli-responsive drug release platforms are summarized to raise some guidelines for prior PD-1/PD-L1-based nanocarrier designs. Finally, the conclusion and outlook in intelligent delivery system targeting PD-1/PD-L1 pathway for cancer immunotherapy are outlined.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Imunoterapia , Neoplasias/tratamento farmacológico
7.
Bioorg Med Chem Lett ; 75: 128974, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36064125

RESUMO

Emodin (EM) is one of the active components of the traditional Chinese medicine rhubarb, and there is evidence of its hypolipidemic activity, though the exact mechanism is unknown. NPC1L1 is a key protein in human cholesterol uptake that is primarily expressed in hepatocytes and gastrointestinal epithelial cells. Our findings suggest that rhodopsin inhibits cellular cholesterol uptake by influencing NPC1L1 cholesterol transport. The results showed that NBD-cholesterol uptake in human HepG2 cells was 27 %, 31.3 %, 33.6 %, 41.6 %, and 52.6 % of control after treatment with 100, 75, 50, 25, and 12.5 % M EM, respectively, compared to 50 % for 100 M Ezetimibe. Kinetic studies revealed that EM inhibited cellular uptake of cholesterol through anti-competitive inhibition. Furthermore, using confocal fluorescence quantification, we discovered that after cholesterol deprivation treatment reintroduced cholesterol supply, cholesterol uptake was significantly higher in HepG2 cells highly expressing NPC1L1 than in U2OS cells with low NPC1L1 expression. As a result, we hypothesize that EM may inhibit cholesterol uptake via NPC1L1 in human hepatocytes in an anti-competitive manner. Overall, as a dietary supplement or lipid-modifying drug, EM has the potential to lower cholesterol.


Assuntos
Emodina , Colesterol/metabolismo , Emodina/farmacologia , Ezetimiba/farmacologia , Humanos , Cinética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Rodopsina/metabolismo
8.
J Enzyme Inhib Med Chem ; 37(1): 2755-2764, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36196773

RESUMO

A set of novel diarylpyridines as anti-tubulin agents were designed, synthesised using a rigid pyridine as a linker to fix the cis-orientation of ring-A and ring-B. All of the target compounds were evaluated for their in vitro antiproliferative activities. Among them, 10t showed remarkable antiproliferative activities against three cancer cell lines (HeLa, MCF-7 and SGC-7901) in sub-micromolar concentrations. Consistent with its potent antiproliferative activity, 10t also displayed potent anti-tubulin activity. Cellular mechanism investigation elucidated 10t disrupted the cellular microtubule structure, arrested cell cycle at G2/M phase and induces apoptosis. Molecular modelling studies showed that 10t could bind to the colchicine binding site on microtubules. These results provide motivation and further guidance for the development of new CA-4 analogues.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Colchicina/metabolismo , Colchicina/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Piridinas/farmacologia , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
9.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364321

RESUMO

Isoliquiritigenin (ISL) is a flavonoid with a chalcone structure extracted from the natural herb Glycyrrhiza glabra. Its anti-inflammatory, antibacterial, antioxidant, and anticancer activities have been extensively studied. Moreover, ISL also possess hypolipidemic and atherosclerosis-reducing effects. However, its cholesterol-lowering mechanisms have not been reported yet. Niemann Pick C1 Like 1 (NPC1L1) is a specific transporter of cholesterol uptake. In this study, we found for the first time that ISL downregulates NPC1L1 expression and competitively inhibits cellular cholesterol uptake by binding to NPC1L1 in a concentration-dependent manner in vitro. This study provides a theoretical basis for further investigation of the molecular mechanisms of its cholesterol-lowering effect in vivo and inspired emerging drug research for cholesterol-lowering purposes through NPC1L1 inhibition.


Assuntos
Anticolesterolemiantes , Chalconas , Chalconas/farmacologia , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Colesterol/metabolismo , Anticolesterolemiantes/farmacologia
10.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234807

RESUMO

Elevated cholesterol significantly increases the risk of developing atherosclerosis and coronary heart disease. The key to treating hypercholesterolemia is lowering plasma cholesterol levels. There have been no studies on the cholesterol-lowering potential of parthenolide (PTL), a naturally occurring small molecule from Tanacetum parthenium. Here, we first put forth PTL's cholesterol-lowering ability to inhibit cellular uptake of cholesterol in a dose-dependent manner. Its performance was on par with the positive control drug, ezetimibe. Niemann-Pick C1 Like-1 (NPC1L1) has been identified as a potential therapeutic target for hypercholesterolemia. The interaction of PTL with NPC1L1 could be explained by the results of molecular docking and filipin staining further reinforces this hypothesis. Furthermore, PTL reduced the expression of NPC1L1 in HepG2 cells in a concentration-dependent manner, which suggests that PTL functions as a potential NPC1L1 inhibitor with therapeutic potential for hypercholesterolemia.


Assuntos
Anticolesterolemiantes , Hipercolesterolemia , Hiperlipidemias , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Colesterol/metabolismo , Ezetimiba/farmacologia , Filipina , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Sesquiterpenos
11.
Bioorg Chem ; 114: 105109, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34175722

RESUMO

Proteolysis targeting chimeras (PROTACs) have been developed to be an effective technology for targeted protein degradation. Each PROTAC contains three key components: a protein-of-interest (POI) ligand, an E3 ligase ligand, and a linker. These bifunctional molecules can hijack the intracellular inherent ubiquitin-proteasome system to degrade different POIs. With several advantages over other therapeutic strategies, PROTACs have set off a new upsurge of drug discovery in recent years. PRTOACs have been extensively explored worldwide and have excelled not only in cancer diseases but also in cardiovascular diseases, fatty liver disease, immune diseases, neurodegenerative diseases, and viral infections. In this review, we aim to summarize the rapid progress from 2010 to 2021 in PROTACs targeting various non-oncoproteins and elucidate the advantages of PROTACs technology. Finally, the potential challenges of this dynamic field are also discussed.


Assuntos
Proteínas/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Descoberta de Drogas , Humanos , Estrutura Molecular , Proteínas/metabolismo
12.
Biochem Biophys Res Commun ; 491(1): 65-71, 2017 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-28698138

RESUMO

Thiosemicarbazone, a class of compounds with excellent biological activity, especially antitumor activity, have attracted wide attention. In this study, a novel fluorinated thiosemicarbazone derivative, 2-(3,4-difluorobenzylidene) hydrazinecarbothioamide (compound 1) was synthesized and its antitumor activities were further investigated on a non-small cell lung cancer cell line (A549) along with its underlying mechanisms. Compound 1 showed significant anti-proliferative activity on A549 cells, which was further proved by colony formation experiment. Compound 1 also inhibits the invasion of A549 cells in a trans-well culture system. Moreover, compound 1 markedly induced apoptosis on A549 cells, and the ratio of Bcl-2/Bax was decreased while the amount of p53, Cleaved-Caspase 3 and Cleaved-PARP expression were increased significantly. Compound 1 decreased the mitochondrial membrane potential, while the content of reactive oxygen was increased obviously. It is revealed that compound 1 mediated cell cycle arrest in G0/G1 phase by reducing G1 phase dependent proteins, CDK4 and Cyclin D1. As a result, it is indicated that compound 1 induced apoptosis on A549 cells was realized by regulating ROS-mediated mitochondria-dependent signaling pathway.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiossemicarbazonas/síntese química , Células A549 , Antineoplásicos/química , Relação Dose-Resposta a Droga , Compostos de Flúor/síntese química , Compostos de Flúor/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tiossemicarbazonas/farmacologia
13.
Bioorg Med Chem Lett ; 27(11): 2488-2492, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28462838

RESUMO

A series of novel carbohydrate-modified antitumor compounds were designed based on glucose transporter 1 (GLUT1), and evaluated for their anticancer activities against four cancer cell lines. The ribose derivatives (compound 9 and 10) exhibited modest inhibitory activity. The compound 9 significantly inhibited the migration of A549 cell and induced A549 cell apoptosis in a concentration-dependent manner. Moreover, compound 9 blocked A549 cells at the G0/G1 phase. The cellular uptake studies suggested that ribose-modified compound 9 could be taken through GLUT1 in A549 cell line.


Assuntos
Antineoplásicos/química , Carboidratos/química , Desenho de Fármacos , Transportador de Glucose Tipo 1/metabolismo , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Transportador de Glucose Tipo 1/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína
14.
Int J Biol Sci ; 20(1): 127-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164188

RESUMO

Tenascin C (TNC), a rich glycoprotein of the extracellular matrix, exhibits a pro-atherosclerosis or anti-atherosclerosis effect depending on its location. TNC, especially its C domain/isoform (TNC-C), is strongly overexpressed in atherosclerotic plaque active areas but virtually undetectable in most normal adult tissues, suggesting that TNC is a promising delivery vector target for atherosclerosis-targeted drugs. Many delivery vectors were investigated by recognizing TNC-C, including G11, G11-iRGD, TN11, PL1, and PL3. F16 and FNLM were also investigated by recognizing TNC-A1 and TNC, respectively. Notably, iRGD was undergoing clinical trials. PL1 not only recognizes TNC-C but also the extra domain-B (EDB) of fibronectin (FN), which is also a promising delivery vector for atherosclerosis-targeted drugs, and several conjugate agents are undergoing clinical trials. The F16-conjugate agent F16IL2 is undergoing clinical trials. Therefore, G11-iRGD, PL1, and F16 have great development value. Furthermore, ATN-RNA and IMA950 were investigated in clinical trials as therapeutic drugs and vaccines by targeting TNC, respectively. Therefore, targeting TNC could greatly improve the success rate of atherosclerosis-targeted drugs and/or specific drug development. This review discussed the role of TNC in atherosclerosis, atherosclerosis-targeted drug delivery vectors, and agent development to provide knowledge for drug development targeting TNC.


Assuntos
Aterosclerose , Placa Aterosclerótica , Adulto , Humanos , Tenascina/genética , Aterosclerose/tratamento farmacológico , Matriz Extracelular , Placa Aterosclerótica/tratamento farmacológico , Isoformas de Proteínas
15.
Eur J Med Chem ; 258: 115612, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37441851

RESUMO

The chemotherapeutic drug of doxorubicin (DOX) has witnessed widespread applications for treating various cancers. DOX-treated dying cells bear cellular modifications which allow enhanced presentation of tumor antigen and neighboring dendritic cell activation. Furthermore, DOX also facilitate the immune-mediated clearance of tumor cells. However, disadvantages such as severe off-target toxicity, and prominent hydrophobicity have resulted in unsatisfactory clinical therapeutic outcomes. The effective delivery of DOX drug molecules is still challenging despite the rapid advances in nanotechnology and biomaterials. Huge progress has been witnessed in DOX nanoprodrugs owing to their brilliant benefits such as tumor stimuli-responsive drug release capacity, high drug loading efficiency and so on. This review summarized recent progresses of DOX prodrug-based nanomedicines to provide deep insights into future development and inspire researchers to explore DOX nanoprodrugs with real clinical applications.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
16.
Int J Biol Macromol ; 249: 125993, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37506794

RESUMO

Hyaluronic acid (HA) represents a natural polysaccharide which has attracted significant attention owing to its improved tumor targeting capacity, enzyme degradation capacity, and excellent biocompatibility. Its receptors, such as CD44, are overexpressed in diverse cancer cells and are closely related with tumor progress and metastasis. Accordingly, numerous researchers have designed various kinds of HA-based drug delivery platforms for CD44-mediated tumor targeting. Specifically, the HA-based nanoprodrugs possess distinct advantages such as good bioavailability, long circulation time, and controlled drug release and retention ability and have been extensively studied during the past years. In this review, the potential strategies and applications of HA-modified nanoprodrugs for drug molecule delivery in anti-tumor therapy are summarized.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/uso terapêutico , Pró-Fármacos/metabolismo , Ácido Hialurônico/metabolismo , Nanomedicina , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Receptores de Hialuronatos/metabolismo , Linhagem Celular Tumoral
17.
Eur J Med Chem ; 248: 115069, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610249

RESUMO

Mitochondria has been identified as a target for tumor therapy. Agents preferentially concentrated in mitochondria may exert more potent antitumor effects by interfering with the normal function of mitochondria. Glutathione reductase (GR) in mitochondria is a crucial antioxidant enzyme to maintain mitochondrial function, and has been recognized as an important target for the development of anticancer drugs. Herein, we present a triphenylphosphonium-modified anticancer agent, MT-1, which can preferentially accumulate in mitochondria and bind to GR by covalent binding manner. As a result, morphology and function of mitochondria were severely damaged, as well as cellular energy supply was severely impeded due to the simultaneously inhibition against mitochondrial respiration and glycolysis. Moreover, MT-1 was found to bind to a completely new site of GR (C278) that has never considered as binding site of inhibitors before. This new binding mode led to the change of GR structure, which affected the stability of the transition state of the catalytic process, and finally led to the inhibition of GR activity. Thus, current study provided a potentially novel tumor therapeutic strategy by targeting novel sites of GR in mitochondrion.


Assuntos
Antineoplásicos , Glutationa Redutase/metabolismo , Antineoplásicos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/metabolismo , Glutationa/metabolismo , Mitocôndrias/metabolismo , Antioxidantes/metabolismo
18.
Nanoscale ; 15(44): 17658-17697, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37909755

RESUMO

Camptothecin (CPT) is a cytotoxic alkaloid that attenuates the replication of cancer cells via blocking DNA topoisomerase 1. Despite its encouraging and wide-spectrum antitumour activity, its application is significantly restricted owing to its instability, low solubility, significant toxicity, and acquired tumour cell resistance. This has resulted in the development of many CPT-based therapeutic agents, especially CPT-based nanomedicines, with improved pharmacokinetic and pharmacodynamic profiles. Specifically, smart CPT-based prodrug nanomedicines with stimuli-responsive release capacity have been extensively explored owing to the advantages such as high drug loading, improved stability, and decreased potential toxicity caused by the carrier materials in comparison with normal nanodrugs and traditional delivery systems. In this review, the potential strategies and applications of CPT-based nanoprodrugs for enhanced CPT delivery toward cancer cells are summarized. We appraise in detail the chemical structures and release mechanisms of these nanoprodrugs and guide materials chemists to develop more powerful nanomedicines that have real clinical therapeutic capacities.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Pró-Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Camptotecina/química , Nanomedicina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Linhagem Celular Tumoral , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia
19.
Front Immunol ; 14: 1323670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143761

RESUMO

Growth differentiation factor 11 (GDF11) is one of the important factors in the pathophysiological process of animals. It is widely expressed in many tissues and organs of animals, showing its wide biological activity and potential application value. Previous research has demonstrated that GDF11 has a therapeutic effect on various diseases, such as anti-myocardial aging and anti-tumor. This has not only sparked intense interest and enthusiasm among academics but also spurred some for-profit businesses to attempt to develop GDF11 as a medication for regenerative medicine or anti-aging application. Currently, Sotatercept, a GDF11 antibody drug, is in the marketing application stage, and HS-235 and rGDF11 are in the preclinical research stage. Therefore, we believe that figuring out which cells GDF11 acts on and its current problems should be an important issue in the scientific and commercial communities. Only through extensive, comprehensive research and discussion can we better understand the role and potential of GDF11, while avoiding unnecessary risks and misinformation. In this review, we aimed to summarize the role of GDF11 in different cells and its current controversies and challenges, providing an important reference for us to deeply understand the function of GDF11 and formulate more effective treatment strategies in the future.


Assuntos
Células , Fatores de Diferenciação de Crescimento , Humanos , Animais , Fatores de Diferenciação de Crescimento/metabolismo , Fatores de Diferenciação de Crescimento/uso terapêutico , Células/metabolismo , Biomarcadores , Neoplasias/terapia , Cardiomiopatias/terapia , Inflamação/terapia
20.
Nanoscale ; 15(2): 461-469, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36533721

RESUMO

Bioorthogonal chemistry enables researchers to manipulate bioactive molecules in living systems. These highly selective and biocompatible reactions can be carried out in various complex environments. Over the past two decades, a considerable number of strides have been made to expand the capacities of bioorthogonal chemistry coupled with the aim to fine-tune present reactions for specific applications. The good points of bioorthogonal chemistry have pushed material chemists to integrate bioorthogonal chemistry with nanotechnologies to broaden the biological applications of nanomaterials. Notably, bioorthogonal nanotechnologies fundamentally rely on, more than half, according to our investigation, tetrazine bioorthogonal chemistry (TBC) to function as bioorthogonal handles to react with target agents owing to the extremely rapid kinetics and high selectivities of TBC. Its utilization in combination with nanotechnologies has led to developments in various areas of biomedicine, such as in situ drug activation and targeted delivery, bioimaging and biosensing, and the understanding of cell-biomolecule interactions. Given the fantastic past achievements and the rapid developments in tetrazine bioorthogonal technologies, the future is certainly very bright.


Assuntos
Química Click , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA