Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 735: 150678, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39270555

RESUMO

Insufficient residual liver tissue after partial hepatectomy (PH) may lead to serious complications such as hepatic failure and small-for-size syndrome. Salidroside (SAL) is obtained from Rhodiola rosea through modernized separation and extraction and has been validated for treating various liver diseases. It's yet unknown, nevertheless, how SAL affects liver regeneration after PH. This study aimed to determine whether SAL could promote liver regeneration after PH in mice. We demonstrated that SAL could attenuate liver injury after PH and promote hepatocyte proliferation and liver mass recovery. Mechanistically, SAL inhibited the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, attenuating pyroptosis. RNA-seq analysis indicated that SAL downregulated the transcription of NLRP3 and GSDMD genes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the NOD-like receptor signaling pathway was significantly enriched in down-regulated signaling pathways. Notably, SAL in combination with the NLRP3 inhibitor MCC950 did not further inhibit NLRP3 inflammasome and promote liver mass recovery. In summary, our findings proved that SAL could be a potential agent for improving liver function and promoting liver regeneration after PH.

2.
J Biochem Mol Toxicol ; 36(7): e23055, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35373417

RESUMO

ß-Amyloid toxicity (Aß) is an important pathological factor of Alzheimer's disease (AD). Studies have shown that genistein can reduce the toxicity of Aß to a certain extent; however, the specific mechanism is still uncertain. In the study, we applied Caenorhabditis elegans strains expressing Aß peptides to evaluate the role of genistein inhibiting Aß toxicity and the undying mechanism. Genistein influencing the sterol metabolism pathway, the HSP-16.2 pathway, and lipofuscin in different strains of C. elegans were studied using reverse transcription-polymerase chain reaction, fluorescence labeling, RNA interference (RNAi), and so forth. Our results showed that genistein alleviated the paralysis of transgenic C. elegans strains. Furthermore, in AD C. elegans, genistein reduced the fluorescence of lipofuscin, downregulated the messenger RNA (mRNA) level of vit-3 and vit-6 which were related to the sterol metabolism pathway, significantly increased the mRNA level and protein level of HSP-16.2, increased the nuclear translocation of the DAF-16 transcription factor and increased the survival rate after heat stress, which was closely associated with HSP-16.2 levels. However, the paralysis-alleviating effect of genistein was greatly reduced because of RNAi-mediated inhibition of hsp-16.2, indicating that the anti-Aß toxicity effect of genistein was greatly dependent on HSP-16.2. The above results suggest that genistein inhibiting the toxicity of Aß in C. elegans, is involved in the modulation of the sterol metabolism pathway by promoting transcription factor DAF-16 translocation into the nucleus, increasing the expression level of HSP-16.2, and reducing the levels of lipofuscin through its antioxidant activity.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/farmacologia , Genisteína/farmacologia , Lipofuscina/metabolismo , Lipofuscina/farmacologia , Paralisia , RNA Mensageiro/metabolismo , Transdução de Sinais , Esteróis/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361834

RESUMO

In this study, we developed a sustained-release transdermal delivery system containing losartan potassium (LP) and verapamil hydrochloride (VPH). LP and VPH have low bioavailability and long half-life. Therefore, the development of an optimum administration mode is necessary to overcome these drawbacks and enhance the antihypertensive effect. A transdermal diffusion meter was used to determine the optimal formulation of LP-VPH transdermal drug delivery systems (TDDS). Based on in vitro results, a sustained-release patch was prepared. Physical characteristics, including quality, stickiness, and appearance, were evaluated in vitro, while pharmacokinetics and skin irritation were evaluated in vivo. The results showed that 8.3% polyvinyl alcohol, 74.7% polyvinylpyrrolidone K30, 12% oleic acid-azone, and 5% polyacrylic acid resin II provided an optimized TDDS product for effective administration of LP and VPH. Furthermore, in vitro and in vivo release tests showed that the system continuously released LP and VPH for 24 h. The pharmacokinetic results indicated that although the maximum concentration was lower, both the area under the curve from 0-time and the mean residence time of the prepared patch were significantly higher than those of the oral preparations. Furthermore, the prepared LP-VPH transdermal patch showed good stability and no skin irritation. The developed LP-VPH TDDS showed a sustained-release effect and good characteristics and pharmacokinetics; therefore, it is an ideal formulation.


Assuntos
Losartan , Verapamil , Preparações de Ação Retardada/farmacocinética , Absorção Cutânea , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 38(11): 1130-4, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24316924

RESUMO

OBJECTIVE: To examine the expression of notch3 in the kidneys of patients with primary hypertension and rats with spontaneous hypertension, and to explore the relationship of notch3 and hypertension renal fibrosis. METHODS: Thirteen patients with primary hypertension served as a primary hypertension group (HP group), and 15 patients with kidney tumor served as a control group (CP group). The spontaneous hypertensive rats served as a primary hypertension group (SHR group, n=6), and WKY rats served as a control group (WKY group, n=6). Masson stainning was used to examine the collagen in the kidneys in the SHR group and the WKY group. Immunohistochemical staining was used to detect the levels of Notch3 in kidneys of the patients and the rats. The expression of snail mRNA in the kidneys in the SHR group and the WKY group was examined by real-time PCR. RESULTS: Masson staining showed much more collagen in the SHR group than that in the WKY group (P<0.05); the expression of Notch3 in the HP group was much higher than that in the CP group ( 6.741±0.231 vs 0.763±0.358, P<0.01). The expression of Notch3 in the SHR group was much higher than that in the WKY group (5.487±0.774 vs 0.421±0.163, P<0.01), and The expression of snail mRNA was much higher in the SHR group than that in the WKY group (0.996±0.120 vs 0.208±0.090, P<0.01 ). CONCLUSION: Notch3 may be related to the occurrence of hypertension renal fibrosis.


Assuntos
Hipertensão/metabolismo , Nefropatias/metabolismo , Receptores Notch/metabolismo , Animais , Arteriosclerose , Hipertensão Essencial , Fibrose , Humanos , Hipertensão/patologia , Rim/patologia , Nefropatias/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Notch3
5.
Antioxidants (Basel) ; 12(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36670986

RESUMO

To determine the anti-heat stress and antioxidant effects of genistein and the underlying mechanisms, lipofuscin, reactive oxygen species (ROS), and survival under stress were first detected in Caenorhabditis elegans (C. elegans); then the localization and quantification of the fluorescent protein was determined by detecting the fluorescently labeled protein mutant strain; in addition, the aging-related mRNAs were detected by applying real-time fluorescent quantitative PCR in C. elegans. The results indicate that genistein substantially extended the lifespan of C. elegans under oxidative stress and heat conditions; and remarkably reduced the accumulation of lipofuscin in C. elegans under hydrogen peroxide (H2O2) and 35 °C stress conditions; in addition, it reduced the generation of ROS caused by H2O2 and upregulated the expression of daf-16, ctl-1, hsf-1, hsp-16.2, sip-1, sek-1, pmk-1, and eat-2, whereas it downregulated the expression of age-1 and daf-2 in C. elegans; similarly, it upregulated the expression of daf-16, sod-3, ctl-1, hsf-1, hsp-16.2, sip-1, sek-1, pmk-1, jnk-1 skn-1, and eat-2, whereas it downregulated the expression of age-1, daf-2, gst-4, and hsp-12.6 in C. elegans at 35 °C; moreover, it increased the accumulation of HSP-16.2 and SKN-1 proteins in nematodes under 35 °C and H2O2 conditions; however, it failed to prolong the survival time in the deleted mutant MQ130 nematodes under 35 °C and H2O2 conditions. These results suggest that genistein promote anti-heat stress and antioxidant effects in C. elegans via insulin/-insulin-like growth factor signaling (IIS), heat shock protein (HSP), mitogen-activated protein kinase (MAPK), dietary restriction (DR), and mitochondrial pathways.

6.
Cell Biochem Biophys ; 80(4): 755-761, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36068383

RESUMO

Zinc ion (Zn2+) is an important functional factor; however, excessive Zn2+ can be toxic. To understand the neurotoxicity of excessive Zn2+ and the underlying mechanism, PC12 cells were treated with excessive Zn2+ and Zn2+ plus N, N, N', N'-Tetrakisethylenediamine (TPEN), a zinc ion chelator agent. Trypan blue and 3-(4,5-dimethyl-2- thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, thiazolyl blue tetrazolium bromide (MTT) assays were used to test cell viability; the relative kits were used to detect the activity of NOS synthase and the content of the receptor for advanced glycation end product (RAGE) in cells. We observed that excessive zinc caused PC12 cell damage and that TPEN partially reversed cell damage caused by excessive zinc. In addition, excessive zinc decreased total nitric oxide synthase (TNOS) activity in cells, in which constitutive nitric oxide synthase (cNOS) activity was significantly reduced; however, inducible nitric oxide synthase (iNOS) activity was extremely promoted. Moreover, excessive zinc upregulated the expression of RAGE, and TPEN effectively reversed the increase in RAGE induced by excessive zinc ions. Therefore, we concluded that excessive zinc caused PC12 cell damage, correlating with the inhibition of NOS and increase of RAGE induced in cells.


Assuntos
Azul Tripano , Zinco , Animais , Brometos/metabolismo , Morte Celular , Quelantes/farmacologia , Etilenodiaminas , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células PC12 , Ratos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Zinco/metabolismo
7.
J Biomed Mater Res A ; 109(11): 2294-2305, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33942484

RESUMO

We aimed to establish a 1-Deoxynojirimycin (DNJ) sustained-release delivery system to improve the hypoglycemic effect of DNJ. We used a transdermal diffusion meter in an in vitro orthogonal experiment to determine the optimal composition of the DNJ sustained-release transdermal system. Based on the in vitro analysis results, a sustained-release patch was prepared, and its pharmacokinetics and other properties were determined in vivo. The results showed that 30% hydroxypropyl methylcellulose (K100M ), 14% carboxymethyl cellulose sodium and 26% oleic acid-azone compound as the matrix material, drug excipient, and penetration enhancer, respectively, produced an optimal DNJ sustained-release delivery system. In vitro release tests showed that the system slowly released DNJ within 12 hr, conforming to the Higuchi equation. In vivo experiments showed that the prepared patch had good hypoglycemic activity and continuously released DNJ within 10 hr. In vivo pharmacokinetic study results showed that compared to conventional patches, the prepared patch exhibited significantly different maximum concentration (Cmax ), time to achieve Cmax (Tmax ), and area under the curve from 0 to time t (AUC[0-t] ) as well as improved pharmacokinetics. In conclusion, the prepared DNJ patch has high stability, a sustained-release effect, and relatively good pharmacokinetics and is a safe dosage form that does not cause skin irritation.


Assuntos
1-Desoxinojirimicina , Pele/metabolismo , Adesivo Transdérmico , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacocinética , 1-Desoxinojirimicina/farmacologia , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Masculino , Camundongos , Coelhos
8.
Food Chem Toxicol ; 146: 111803, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33035629

RESUMO

This study aimed to investigate the therapeutic effect of curcumin on type 2 diabetes and its underlying mechanisms. A type 2 diabetes mellitus rat model was established by providing high-fat diet and low doses of streptozotocin. Type 2 diabetes mellitus rats were treated with low dose and high dose of curcumin for 8 weeks. The results showed that high-dose curcumin significantly reduced fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, alanine aminotransferase, and aspartate transaminase, liver coefficient, and malondialdehyde levels, and BCL2-Associated X expression in the type 2 diabetes mellitus rats. High-dose curcumin increased the levels of liver superoxide dismutase, catalase, and glutathione; as well as the expression of liver B-cell lymphoma-2, phosphatidylinositol 3-kinase, phosphorylated phosphatidylinositol 3-kinase, protein kinase B, and phosphorylated protein kinase B in type 2 diabetes mellitus rats. Furthermore, it ameliorated the histological structure of the liver and pancreas in diabetes mellitus model rats. However, low-dose curcumin had no significant effect on diabetes mellitus model rats. The results suggest that adequate doses of curcumin controls type 2 diabetes mellitus development as well as the mechanism involved in its anti-apoptotic actions and phosphatidylinositol 3-hydroxy kinase/protein kinase B signal pathway regulation in the liver.


Assuntos
Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Curcumina/uso terapêutico , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Hipoglicemiantes/uso terapêutico , Lipídeos/sangue , Fígado/enzimologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA